Наука в эпоху эллинизма: основные достижения, имена крупных ученых, общая характеристика уровня и специфики науки. Эллинистическая культура

Эпоха эллинизма стала периодом расцвета античной науки. Именно в это время наука стала отдельной сферой культуры, окончательно отделившись от философии. Ученых-энциклопедистов, подобных Аристотелю, теперь уже почти не было, но зато каждую научную дисциплину представляли имена крупных ученых. Немалую роль в развитии научных знаний сыграла всемерная поддержка науки эллинистическими правителями. В частности, Птолемеи способствовали превращению александрийского Мусея в главный научный центр цивилизованного мира того времени. В III-I вв. до н. э. большинство известных ученых либо активно работали в нем, либо получили в нем образование.

Античная наука имела ряд особенностей, отличающих ее от науки Нового времени, причем именно в эпоху эллинизма эти особенности проявились в полной мере. Так, в работе греческих ученых крайне малое место занимал эксперимент; главными методами научного исследования были наблюдение и логическое умозаключение. Представители эллинистической науки были скорее рационалистами, чем эмпириками. Еще важнее то, что во времена античности наука была почта совершенно оторвана от практики. В ней видели самоцель, не снисходящую до «низменных» практических потребностей. А потому в эллинистическом мире при очень большом прогрессе в теоретических науках весьма слабо была развита техника. С точки зрения теории античная наука была не только готова к изобретению паровой машины, но и совершила это техническое открытие. Механик Герон Александрийский (он жил на рубеже I в. до н. э. – I в. н. э.) изобрел механизм, в котором вырывавшийся из отверстия пар своей силой подталкивал и заставлял вращаться металлический шарик. Но ни к каким практическим результатам его изобретение не привело. Для ученого паровое устройство было не более чем оригинальным плодом игры ума, а те, кто наблюдал за действием механизма, видели в нем занятную игрушку. Тем не менее Герон продолжал изобретать. В его кукольном театре выступали куклы-автоматы, которые самостоятельно разыгрывали целые пьесы, т. е. действовали по заданной сложной программе. Но и это изобретение в то время никак не было использовано на практике. Техника развивалась лишь в сферах, связанных с военным делом (осадные орудия, фортификационные сооружения) и строительством монументальных сооружений. Что же касается основных отраслей экономики, будь то сельское хозяйство или ремесло, то их техническая оснащенность из века в век оставалась примерно на одном и том же уровне.

Величайшим ученым эпохи эллинизма был математик, механик и физик Архимед из Сиракуз (ок. 287-212 до н. э.). Он получил образование в александрийском Мусее и некоторое время работал там, а затем возвратился в родной город и стал придворным ученым тирана Гиерона II. В своих многочисленных трудах Архимед развил ряд принципиальных теоретических положений (суммирование геометрической прогрессии, весьма точное вычисление числа «пи» и др.), обосновал закон рычага, открыл основной закон гидростатики (с тех пор его называют законом Архимеда). Среди античных ученых Архимед выделялся стремлением сочетать научно-теоретическую и практическую деятельность. Ему принадлежит большое количество инженерных изобретений: «архимедов винт», применявшийся для полива полей, планетарий – модель небесной сферы, позволявшая проследить движение небесных тел, мощные рычаги и др. Когда римляне осадили Сиракузы, по проектам Архимеда были сооружены многочисленные оборонительные орудия и машины, с помощью которых жителям города удавалось в течение долгого времени сдерживать натиск врагов и наносить им значительный урон. Однако, даже работая над устройствами, рассчитанными на практическое применение, ученый постоянно выступает в защиту «чистой» науки, развивающейся по собственным законам, а не под влиянием запросов жизни.


Как и ранее в греческом мире, в эпоху эллинизма приоритетной сферой математики была геометрия. В школьных учебниках изложение основных геометрических аксиом и теорем и по сей день дается в основном в той же последовательности, которую предложил ученый из Александрии Евклид (II Iв. до н.э.).

В области астрономии уже в начале эпохи эллинизма было совершено выдающееся открытие, намного опередившее свое время. Почти за две тысячи лет до Николая Коперника Аристарх Самосский (ок. 310-230 до н. э.) выдвинул гипотезу, согласно которой не Солнце и планеты вращаются вокруг Земли, как полагали раньше, а Земля и планеты вращаются вокруг Солнца. Однако Аристарх не сумел должным образом обосновать свою идею, допустил серьезные ошибки в вычислениях и тем скомпрометировал свою гелиоцентрическую теорию. Она не была воспринята наукой, по-прежнему признававшей геоцентрическую систему, основывающуюся на том, что Земля являлась центром мироздания. Отказ от признания теории Аристарха не был связан с причинами религиозного характера. Просто ученые посчитали, что эта концепция неадекватно объясняет природные явления. Сторонником геоцентризма был и Гиштрх (ок. 180/190-125 до н. э.). Именно этот известный астроном составил лучший в античности каталог видимых звезд, разбив их на классы в зависимости от звездной величины (яркости). Классификация Гиппарха, несколько модифицированная, принята в астрономии и по сей день. Греческий ученый весьма точно вычислил расстояние от Земли до Луны, уточнил продолжительность солнечного года и лунного месяца.

В эпоху эллинизма бурно развивается география . После дальних походов Александра Македонского грекам стали известны многие новые земли, причем не только на Востоке, но и на Западе. Примерно в то же время путешественник Пифей (Питеас) из Массилии (IV в. до н. э.) совершил плавание в северную часть Атлантического океана. Он обогнул Британские острова и, возможно, достиг берегов Скандинавии. Накопление новых эмпирических данных требовало их теоретического осмысления. Этот процесс связан в первую очередь с именем великого ученого Эратосфена Киренского (ок. 276-194 до н. э.), работавшего в Александрии и в течение многих лет возглавлявшего библиотеку Мусея. Эратосфен был одним из последних античных энциклопедистов: астрономом, математиком, филологом. Но наибольший вклад он внес в развитие географии. Эратосфен первым предположил существование на Земле Мирового океана. С удивительной для того времени точностью он вычислил длину земной окружности по меридиану и нанес на карты сетку параллелей. При этом за основу была взята восточная шестидесятеричная система (окружность Земли делится на 360 градусов), сохраняющаяся и по сей день. Уже на исходе эпохи эллинизма Страбон (64/63 до н.э. – 23/24 н. э.) составил описание всего известного тогда мира – от Британии до Индии. Хотя он был не ученым-исследователем, делавшим оригинальные открытия, а скорее популяризатором науки, тем не менее его фундаментальный труд весьма ценен.

Естествоиспытатель и философ, ученик Аристотеля, руководивший после него Ликеем, Феофраст (Теофраст, 372-287 до н. э.) стал основоположником ботаники . В III в. до н. э. врачи Герофил (р. ок. 300 до н. э.) и Эрасистрат (ок. 300 – ок. 240 до н. э.), практиковавшие в Александрии, разработали научные основы анатомии . Прогрессу анатомических знаний во многом способствовали местные условия: вскрытие трупов в Египте не только не было запрещено, как в Греции, но, напротив, регулярно делалось при мумифицировании. В эпоху эллинизма была открыта нервная система, составлено правильное представление о системе кровообращения, установлена роль мозга в мышлении.

Из наук, которые ныне принято называть гуманитарными, в эпоху эллинизма наибольший приоритет получила филология. Ученые, работавшие в Александрийской библиотеке, составляли каталоги ее книжных богатств, исследовали и сопоставляли рукописи с целью определения наиболее аутентичных текстов древних авторов, писали комментарии к произведениям литературы. Крупными филологами были Аристофан Византийский (III в. до н. э.), Дидим (I в. до н. э.) и др.


Бурное развитие как гуманитарных, так и естественных наук является характерной особенностью эллинистической эпохи. Правящие монархи для управления державами, для ведения продолжительных и многочисленных войн нуждались в применении новых эффективных методов и средств и могли их получить лишь используя результаты научного знания. При дворах эллинистических правителей создаются коллективы ученых, щедро субсидируемые правительством, занятые решением научных проблем. Естественно, правителей интересовала не столько наука как таковая, сколько возможность ее практического применения в военном деле, строительстве, производстве, мореплавании и др. Поэтому одна из особенностей научной мысли эллинистической эпохи состояла в повышении практического применения результатов научного исследования в различных областях государственного управления и жизни. Бурное развитие науки и практическое применение ее результатов способствовало отделению науки от философии и выделению ее в самостоятельную сферу человеческой деятельности. Если в классическое время каждый крупный мыслитель (Пифагор, Анаксагор, Демокрит, Платон, Аристотель и др.) занимался собственно философией и многими конкретными науками, то в эллинистическое время наблюдается дифференциация и специализация научных дисциплин. Математика и механика, астрономия и география, медицина и ботаника, филология и история стали рассматриваться как особые научные специальности, имеющие свою специфическую проблематику, свои методы исследования, собственные перспективы развития.

Бюст знаменитого ученого эпохи Эллинизма Платона. Фото: Marie-Lan Nguyen

Больших успехов достигли математика и астрономия. Эти науки развивались на основе, заложенной в классический период Пифагором и его школой, Анаксагором и Евдоксом. Вместе с тем богатый опыт математических исследований и астрономических наблюдений, проведенных представителями древневосточной науки, в частности вавилонскими и египетскими учеными, способствовал разработке эллинистической математики, астрономии и других научных дисциплин.

Выдающимися математиками (и вместе с тем представителями ряда отраслей физики) были три гиганта эллинистической науки: Эвклид из Александрии (конец IV- начало III вв. до н. э.), Архимед из Сиракуз (287–212 гг. до н. э.) и Аполлоний из Перги в Памфилии (вторая половина III в. до н. э.). Наиболее известным произведением Эвклида стали его знаменитые «Начала», подлинная математическая энциклопедия своего времени, в которой автор систематизировал и придал формальную законченность многим идеям своих предшественников. Изложенные Эвклидом математические знания легли в основу элементарной математики Нового времени и, как таковые, используются в средней школе до сих пор.

Архимед был разносторонним ученым и внес огромный вклад в развитие античной математики и физики: он вычислил значение числа p (пи) (отношение длины окружности к диаметру), заложил основы исчисления бесконечно малых и больших величин, решил отношение объема шара к объему описывающего его цилиндра, стал основателем гидростатики. Архимед, может быть, больше, чем любой другой ученый эллинизма, сделал для практического применения научных выводов. Он стал изобретателем планетария, приводившегося в движение водой и изображавшего движение небесных тел, сложного блока (так называемая «барулка») для передвижения тяжестей, бесконечного (так называемого архимедова) винта для откачивания воды из шахт, трюмов кораблей. Ряд его выводов применялся для улучшения конструкции осадных приспособлений и метательных машин.

Крупнейшим вкладом Аполлония из Перги стала разработанная им теория конических сечений, основы геометрической алгебры и классификация иррациональных величин, которые предвосхитили открытия европейских математиков Нового времени.

Замечательны достижения эллинистических ученых в области астрономии. Самыми крупными из них были Аристарх Самосский (310–230 гг. до н. э.), Эратосфен Киренский (275–200 гг. до н. э.) и Гиппарх Никейский (ок. 190-ок. 126 гг. до н. э.). Величайшим достижением эллинистической астрономии была разработка Аристархом гелиоцентрической системы мира, поиск научных доказательств такого устройства Вселенной, которое предполагало огромные размеры Солнца. Вокруг него вращаются все планеты, в том числе и Земля, а звезды - это аналогичные Солнцу тела, находящиеся на громадных расстояниях от Земли и потому кажущиеся неподвижными. Энциклопедически образованным ученым был Эратосфен, которого по разносторонности и глубине знаний можно сравнить с великим Аристотелем. Известны его труды по исторической критике и хронологии, по математике и филологии, но наибольший вклад Эратосфен внес в астрономию и тесно связанную с изучением небесных светил теоретическую географию. Используя математический аппарат, включая элементы тригонометрических вычислений, наблюдения за небесными телами, Эратосфен измерил окружность земного экватора, определив его в 39 700 тыс. км, что очень близко действительному размеру (около 40 тыс. км), определил длину и ширину обитаемой части Земли - тогдашней ойкумены, наклон плоскости эклиптики. Исследование поверхности земного шара привело Эратосфена к выводу, что можно достичь Индии, если плыть на запад от Испании. Это наблюдение впоследствии было повторено рядом других ученых, и им руководствовался знаменитый Христофор Колумб, когда отправлялся в свое знаменитое плавание в Индию в конце XV в.

Одним из самых прославленных ученых эллинизма был Гиппарх. Он не принял гелиоцентрическую систему Аристарха Самосского и, использовав идеи своих предшественников, дал наиболее обстоятельную разработку так называемой геоцентрической системы устройства Вселенной, которая была заимствована Клавдием Птолемеем и, освященная авторитетом последнего, стала господствующей системой в средние века, вплоть до Коперника. Гиппарх сделал целый ряд важных открытий: обнаружил явление прецессии равноденствий, более точно установил продолжительность солнечного года и лунного месяца и тем самым внес уточнения в действующий календарь, точнее определил расстояние от Земли до Луны. Он составил лучший для древности каталог - в него включены более 800 звезд с определением их долготы и широты и разделением их по яркости на три класса. Высокая точность выводов Гиппарха основывалась на более широком, чем у других ученых, использовании тригонометрических соотношений и вычислений.

Основателем науки о растениях считается ближайший ученик Аристотеля Феофраст из Лесбоса (372–287 гг. до н. э.), разносторонний ученый, автор многочисленных работ по самым различным специальностям. Однако наибольшее значение для дальнейшего развития науки имели его труды по ботанике, в частности «Исследование растений» и «Происхождение растений». На основе тщательных исследований Феофраста в III–I вв. до н. э. появилось несколько специальных трактатов по сельскому хозяйству и агрономии.

Большие успехи были сделаны в медицине. Здесь достижения греческих ученых V–IV вв. до н. э., в частности знаменитого Гиппократа, и богатейшие традиции древневосточной медицины дали плодотворные результаты. Крупными светилами эллинистической медицины были Герофил из Халкедона и Эрасистрат из Кеосак, создатели двух влиятельных медицинских школ III в. до н. э. Им принадлежат такие крупные открытия, как явление кровообращения, наличие нервной системы, установление различия между двигательными и чувствительными центрами и целый ряд других важных наблюдений в области физиологии и анатомии человека, которые были забыты и вновь открыты лишь в Новое время. Асклепиад из Прусы в I в. до н. э. прославился эффективным лечением больных с помощью диеты, прогулок, массажа и холодных ванн и добился таких больших успехов, что даже возникла легенда, будто он воскресил умершего человека.

Из гуманитарных наук в Александрийском музее успешно развивались филология, историческая критика и текстология. Именно в эллинистическое время были выверены тексты и произведена классификация многих классических произведений древних авторов, которые впоследствии стали каноническими и в таком виде дошли до нашего времени. Каллимаху принадлежало интересное библиографическое руководство огромной ценности, настоящая историко-литературная энциклопедия (так называемые «Таблицы») в 120 книгах. В них были собраны сведения о наиболее известных писателях начиная с Гомера, с краткими аннотациями о содержании их произведений. «Таблицы» Каллимаха стали основой последующих филологических и историко-литературных исследований ученых эллинистического времени.



Бурное развитие как гуманитарных, так и естественных наук является характерной особенностью эллинистической эпохи. Правящие монархи для управления державами, для ведения продолжительных и многочисленных войн нуждались в применении новых эффективных методов и средств и могли их получить лишь используя результаты научного знания.

При дворах эллинистических правителей создаются коллективы ученых, занятые решением научных проблем. Естественно, правителей интересовала не столько наука как таковая, сколько возможность ее практического применения в военном деле, строительстве, производстве, мореплавании и др. Поэтому одна из особенностей научной мысли эллинистической эпохи состояла в повышении практического применения результатов научного исследования в различных областях государственного управления и жизни. Это способствовало отделению науки от философии и выделению ее в самостоятельную сферу человеческой деятельности. Если в классическое время каждый крупный мыслитель занимался собственно философией и многими конкретными науками, то в эллинистическое время наблюдается дифференциация и специализация научных дисциплин. Математика и механика, астрономия и география, медицина и ботаника, филология и история стали рассматриваться как особые научные специальности, имеющие свою специфическую проблематику, свои методы исследования, собственные перспективы развития.

Больших успехов достигли математика и астрономия. Выдающимися математиками (и вместе с тем представителями ряда отраслей физики) были три гиганта эллинистической науки: Эвклид из Александрии (конец IV- начало III вв. до н. э.), Архимед из Сиракуз (287–212 гг. до н. э.) и Аполлоний из Перги в Памфилии (вторая половина III в. до н. э.). Изложенные Эвклидом математические знания легли в основу элементарной математики Нового времени и, как таковые, используются в средней школе до сих пор. Архимед вычислил значение числа p (пи), заложил основы исчисления бесконечно малых и больших величин, много сделал для практического применения научных выводов. Он стал изобретателем сложного блока для передвижения тяжестей, бесконечного (так называемого архимедова) винта для откачивания воды из шахт, трюмов кораблей. Ряд его выводов применялся для улучшения конструкции осадных приспособлений и метательных машин. Крупнейшим вкладом Аполлония из Перги стала разработанная им теория конических сечений, основы геометрической алгебры и классификация иррациональных величин, которые предвосхитили открытия европейских математиков Нового времени.

Величайшим достижением эллинистической астрономии была разработка Аристархом Самосским гелиоцентрической системы мира. Энциклопедически образованным ученым был Эратосфен, которого по разносторонности и глубине знаний можно сравнить с великим Аристотелем. Известны его труды по исторической критике и хронологии, по математике и филологии, но наибольший вклад Эратосфен внес в астрономию и тесно связанную с изучением небесных светил теоретическую географию. Используя математический аппарат, включая элементы тригонометрических вычислений, наблюдения за небесными телами, Эратосфен измерил окружность земного экватора, определив его в 39 700 тыс. км, что очень близко действительному размеру (около 40 тыс. км), определил длину и ширину обитаемой части Земли - тогдашней ойкумены. Исследование поверхности земного шара привело Эратосфена к выводу, что можно достичь Индии, если плыть на запад от Испании. Это наблюдение впоследствии было повторено рядом других ученых, и им руководствовался знаменитый Христофор Колумб, когда отправлялся в свое знаменитое плавание в Индию в конце XV в.

Одним из самых прославленных ученых эллинизма был Гиппарх. Он не принял гелиоцентрическую систему Аристарха Самосского и, использовав идеи своих предшественников, дал наиболее обстоятельную разработку так называемой геоцентрической системы устройства Вселенной, которая была заимствована Клавдием Птолемеем и, освященная авторитетом последнего, стала господствующей системой в средние века, вплоть до Коперника.

Большие успехи были сделаны в медицине. Здесь достижения греческих ученых V–IV вв. до н. э., в частности знаменитого Гиппократа, и богатейшие традиции древневосточной медицины дали плодотворные результаты. Крупными светилами эллинистической медицины были Герофил из Халкедона и Эрасистрат из Кеосак, создатели двух влиятельных медицинских школ III в. до н. э. Им принадлежат такие крупные открытия, как явление кровообращения, наличие нервной системы, установление различия между двигательными и чувствительными центрами и целый ряд других важных наблюдений в области физиологии и анатомии человека, которые были забыты и вновь открыты лишь в Новое время.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Начиная с Аристотеля разделение наук, стихийно начатое еще ранее, получило свое теоретическое обоснование. Великих философских систем в Греции уже не рождалось, зато в отдельных науках и, прежде всего естественных, наблюдался значительный прогресс. Этот период связан с Александрией Египетской, с городом, где благодаря династии Птолемеев был создан центр наук – Мусейон и где ученые поддерживались государством. Там же находилась знаменитая Александрийская библиотека.

Астрономия. На первом этапе становления греческой астрономии этот процесс шел в двух направлениях: I) выдвижение астрономических гипотез, 2)развитие систематических и все более точных и регулярных наблюдений. И лишь в эллинистическую, даже римскую эпоху произошло соединение победившей гипотезы с накопленными наблюдениями, вернее гипотеза побеждает потому, что объясняет наблюдаемое. В первом направлении развивали астрономию в основном философы: Анаксимандр, Анаксимен, Пифагор, Анаксагор, Филолай; во втором – те, кто занимался календарной астрономией: Клеостат с Тенедоса (конец 6-го в. до н.э.), Эпонид Хиосский (ок.450 г.до н.э.), Метон и Евктемон из Афин (ок. 430 г. до н.э.).

По-видимому, пифагорейцам принадлежит идея о шарообразности Земли, очевидно, из идей симметрии и геометрической идеальности. Эта идея стала общепризнанной в античной астрономии.

Еще Анаксимандр выдвинул идею о центральном положении Земли, свободно висящей в пространстве (правда ее форма ему виделась цилиндрической). Парадоксальная идея, но также принятая практически без доказательств.

Одним из первых, задолго до Коперника, Аристарх Самосский (кон. 4 в. – 1-я пол. 3 в. до н. э.), географ и астроном, высказывает идею гелиоцентрического устройства мира: Земля вращается вокруг неподвижного Солнца, находящегося в центре сферы неподвижных звёзд. Система Аристарха Самосского, однако, не была принята современниками. Почему? Из нее вытекали два следствия, не гармонирующие с античным представлением о космосе: практическая его бесконечность и разноприродность планет и звезд. Птолемей оценивает расстояние от Земли до Солнца в 1200 радиусов Земли, что в 10 000 раз меньше действительного. По-видимому, большинство греческих ученых не могло согласиться с тем, что звезды находятся невообразимо далеко от Земли.

“Генеральной линией” развития греческой космологии стала геоцентрическая система Платона – Аристотеля – Птолемея.

Тогда же появляются первые попытки измерить размер Земли. Самое раннее описание метода измерения размера Земли относится к Эратосфену Киренскому (276 – 194 гг. до н. э.). Он же заложил математической географии. Оригинальное описание процедуры, как и большинство трудов Эратосфена, утеряно, но благодаря астроному Клеомеду нам известны и сам метод, и полученный результат – примерно 25000 миль (отличие от подлинной длины – 200-300 миль). Автор географических карт Мира. Труды по математике (теории чисел), астрономии, филологии, философии.

Математика. На Древнем Востоке математика возникла, по-видимому, задолго до греков. Но особенностью древнеегипетской и вавилонской математики было отсутствие в ней (за исключением отдельных элементов) единой системы доказательств, которая впервые появляется именно у греков. В Греции мы наблюдаем появление того, что можно назвать теоретической системой математики: греки впервые стали строго выводить одни математические положения из других, т.е. ввели в математику доказательство. Таким образом, в Греции имела место как практически-прикладная математика (искусство счисления), сходная с египетской и вавилонской, так и теоретическая математика, предполагавшая систематическую связь математических высказываний, строгий переход от одного предложения к другому с помощью доказательства. Возникает аксиоматический подход построения теории. Математика базировалась на наследии пифагорейской, элейской, милетской школ. Здесь следует акцентировать роль Зенона, способствовавшего оформлению теории доказательства, а также Аристотеля, осуществившего глобальный синтез известных приёмов логического доказательства и обобщившего их в регулятивный канон исследования, на который сознательно ориентировалось всякое научное познание. Именно математика как систематическая теория была впервые создана в Греции.

В 3 веке до н. э. появляется один из основных трудов античной математики – «Начала» Евклида, в которой он систематически изложил принципы элементарной геометрии (названной впоследствии евклидовой геометрией), элементы теории чисел, общей теории отношений и метода определения площадей и объемов. Разработкой методов нахождения площадей, поверхностей и объемов фигур и тел, (предвосхитивших интегральные методы), также занимался Архимед. Именно в античной геометрии были отработаны две основные процедуры теоретического рассуждения: прямая – доказательство геометрических положений, и обратная – решение проблем. Эти две процедуры являются историческим эквивалентом современной теоретической постановки и решения в технических науках задач "синтеза – анализа".

«Физика». Греческое слово «физика» в современных исследованиях по истории науки не случайно берётся в кавычки, ибо физика греков – нечто совсем иное, нежели современная естественно-научная дисциплина. Наука физика была такой наукой о природе, которая включало познание не путём «испытания», а путем умозрительного уяснения происхождения и сущности природного мира как целого. По сути своей это была созерцательная наука. Хотя грекам были известны многочисленные опытные данные, составившие предмет изучения последующего естествознания. Греки обнаружили «притягательные» особенности натертого янтаря, магнитных камней, явления преломления в жидких средах и т.п. Тем не менее, опытного естествознания в Греции не возникло. Почему? Грекам был чужд опытный, экспериментальный тип познания в силу безраздельного господства созерцательности.

Усилия античных физиков нацеливались на поиск первоосновы (субстанции) сущего – архэ – и его элементов, стихий – стоихенон.

Однако в поздний эллинистический период закладываются основы естественных и технических наук.

Техника. Механика. Античное "технэ" – это не техника в нашем понимании, а все, что сделано руками (и военная техника, и игрушки, и модели, и изделия ремесленников и даже произведения художников).

Для античного мышления характерно противопоставление естественного с одной стороны и искусственного, созданного человеком, с другой. Для античности именно здесь разделялись наука и техника. Механика для греков это вовсе не часть физики, а особое искусство построения машин, оно не может добавить ничего существенного к познанию природы, ибо представляет собой не познание того, что есть в природе, а изобретение того, чего в природе нет. Таким образом, механика есть средство перехитрить природу и получить пользу. Тем не менее, талант греков и относительная простота механики привели к большим успехам механики в эллинистический период.

Пожалуй, одним из самых известных ученых-механиков Греции был Архимед из Сиракуз (ок. 287 – 212 гг. до н.э.). Он был очень разносторонним учеником-естественником, но не философом. Архимед занимался математикой, оптикой (его труд «Катоптрика» не сохранился), астрономией (построил первый «планетарий» (астрономическая сфера) и прибора для измерения видимого диаметра Солнца), физикой (труды по статике и гидростатике).

В гидростатике Архимед формулирует известный закон. При этом он исходит из одного предположения, задающего модель идеальной жидкости, и из него формулирует и доказывает ряд других положений. То есть использовался подход аналогичный методу, применявшемуся при построении конструктивно-доказательной математики античности. С гидростатическими исследованиями, связан и метод определения удельного веса, разработанный Архимедом.

В теоретической механике Архимед – основатель статики, одного из трех разделов механики. Именно он разработал учение о равновесии твердых тел: установил понятие центра тяжести, разработал методы его нахождения, дал первую теорию рычага.

В области практической механики Архимед изобрел “архимедов винт” - винт для подъема воды, который затем широко использовался в Египте для подъема воды из Нила на высоту до 4-х метров. Также Архимеду приписывают создание и усовершенствование оборонительных и осадных машин.

Другим известным механиком античности был Герон Александрийский (около 120 г н.э.). Это практик-механик и практик-математик. В математике он разрабатывал методы приближенных вычислений, задачи на измерение Земли. Его многочисленные механические изобретения, впрочем, носили характер игрушек. Например, автомат для открывания дверей в храм с одновременным зажиганием жертвенного огня. В своих автоматах Герон впервые использовал силу пара. Герон дал систематическое изложение основных достижений античного мира по прикладной механике и математике.

В нетехнических науках можно упомянуть Теофраста (Феофраста) (372-287 до н.э.) – естествоиспытателя и философа, одного из первых ботаников древности. Ученик и друг Аристотеля. Автор свыше 200 трудов по естествознанию (физике, минералогии, физиологии), философии и психологии. Создал классификацию растений, систематизировал накопленные наблюдения по морфологии, географии и медицинскому использованию растений.

Плутарх – греческий философ, биограф и моралист. Автор исторического труда «Сравнительные жизнеописания», в котором он изложил биографии героев и правителей Древнего Рима и Древней Греции.

Отличительными признаками эллинистической культуры являются синкретизм, космополитизм, индивидуализм и преобладание естественно-математических и технических дисциплин над гуманитарными.,

Как общую черту эллинистической культуры, свойственную всем научным дисциплинам, надо отметить: богатство фактиче-

Арсснал в Пергаме. 111 в. до н. э. Найдено 894 ядра , среди них доходящие

бесом до 73 кг.

ского материала, его систематизацию, солидный научный аппарат при сравнительной бедности оригинальных идей. Расцвет эллинистической культуры относится к первым векам эллинизма (IV-III). Со II в. уже чувствуется ослабление научной и художественной дятелыюсти, что стояло в связи с общим расстройством хозяйственной жизни, ростом деспотизма и умиранием общественной и личной инициативы.

Из всех отраслей научного знания в эллинистическую эпоху одно из первых мест занимала военная и строительная техника

и связанные с ними дисциплины. Прогресс военной техники н военного искусства вызывался растущими потребностями военного производства и снаряжения. В большом количестве изготовлялись предметы военного снаряжения-стрелы, луки, мечи, панцири, щиты, боевые колесницы, стенобитные машины (баллисты и катапульты), строились крепости и оснащались военные суда. Предметы военного снаряжения поставлялись ремесленниками или изготовлялись в специальных царских мастерских. Усложнившиеся военные задачи и переход к профессиональной наемной армии повлекли за собой крупные сдвиги в области военной техники и вооружения. Еще во время пелопоннесской войны появились осадные приборы, тараны (для пробития стен) и черепахи-навесы, защищавшие осаждающих от копий и стрел, камней и свинца осажденных, и большие метательные орудия-катапульты и баллисты, выбрасывавшие на далекое расстояние длинные стрелы и большой величины камни.

Осадные орудия применялись в дело не только во время осады городов, но и во время морских боев, что повело к изменениям в конструкции судов. Старые суда, недостаточные для перевозки громадных боевых машин и большого экипажа, вытесняются многовесельными и многоярусными судами, двадцати-, тридцати- и пятидесятивесельными судами, пяти- восьми- и-более ярусными кораблями, сменявшими прежние триеры.

О характере военных кораблей нового типа можно судить по описанию одного из таких кора блей-гигантов, построенного Птолемеем Фила дел ьфом. По приказу царя был построен сорокавесельный корабль (тессароконтера) длиной в 280 футов, шириной в 38 футов и вышиной до носа в 48 футов, от вымпела до подводной части 53 фута. Корабль имел два носа и две кормы и восемь таранов. Весла были налиты свинцом и легко скользили в уключинах. На корабле помещались 4 000 гребцов, 400 человек прислуги, 3000 человек экипажа и большой запас провианта.

Примеру Филадельфа последовал его современник сиракузский тиран Гиерои II (269-214 гг.). Гиерон собрал отовсюду корабельных мастеров, поставил во главе их коринфского архитектора Архия и приказал построить корабль по всем правилам тогдашней науки и техники. После больших трудов был построен двадцативесельный многоярусный корабль с тремя коридорами для груза, пассажиров и военной команды. На корабле имелись специальные каюты для мужчин и для женщин, прекрасн оборудованная кухня, столовая, крытые портики, галлереи, гимнастические палестры, сараи, погреба и мельницы. Корабль был расписан картинами. На бортах его имелось восемь башен, на брустверах помещалась боевая машина (катапульта), выбрасывавшая большого веса камни и копья. Вся механическая часть (брустверы, блоки, приборы и рычаги) выполнялась под непосредственным руководством знаменитого сицилийского механика Архимеда.

Наряду с военными кораблями первостепенное значение в эпоху эллинизма приобретают боевые машины и осадные орудия.

При осаде Родоса (304 г.) Деметрий Полиоркет пустил в ход гигантскую осадную машину гелополу (берущую города). Гело- пола имела девять этажей, была поставлена на колеса и требовала для своего передвижения 3 1 / 2 тысяч людей, на обязанности которых лежала прокладка дорог, устройство рвов и расчистка пространств для осадных орудий. Уже это одно достаточно указывает на уровень военной техники и военной науки эллинистических государств, тративших огромные средства на военное дело.

Против наступательных орудий были изобретены оборонительные орудия. Во время осады Сиракуз римлянами (213 г.) осажденные сиракузяне пустили в ход механические приборы Архимеда, зацеплявшие крюками римские корабли и топившие их.

Постройка крепостей, дворцов, гигантских судов, маяков, приготовление красок, добыча руд, изготовление машин и инструментов и т. д. предполагали высокий уровень технических знаний и точных наук.

Прогресс заметен не только в военной, но и в производственной технике.

Целый переворот был произведен изобретением бесконечного архимедова винта, водочерпательного колеса с ковшами, так называемой египетской улитки, приводимой в движение животной силой, и водяной мельницы. Все эти изобретения явились продуктом долгого развития, результатом длинной цепи мелких усовершенствований в горном и мукомольном деле-в двух главных отраслях античного производства.

Не меньшее значение, чем изобретение архимедова винта, имело появление водяной мельницы (гидромюле), не получившей, однако, широкого применения в условиях античного производства.

Прогресс в ткацком производстве Египта связан с переходом от вертикального станка к горизонтальному, в кузнечно-слесарном производстве-с усовершенствованием горна и молота, в гончарном-с появлением обжигательных печей . Немало достижений было сделано и в производстве красок, выдувании стекла и выделке кож. Введение триспаста-подъемного механизма, представляющего систему блоков и рычагов,-также восходит к эллинистическому Востоку.

Об интересе к механическим изобретениям дает представление театр автоматов и кукол александрийского механика Геропа. В Александрии существовали театры, напоминающие наши театры марионеток. В этих театрах все делалось автоматическим путем. В них автоматизм был проведен сначала до конца: автоматически появлялись куклы, принимавшие участие в представлении, автоматически же зажигались и гасли огни и т. д.

И тем не менее столь блестящее начало не имело своего продолжения. Технический прогресс в условиях античного мира оставался на поверхности и не шел вглубь. Промышленного переворота он не произвел. Причиной этого была, как уже не один раз указывалось выше, совокупность всех условий рабовладельческого способа производства.

Не случайно, что в эллинистической технике более всего усовершенствований было сделано в строительной механике, подъемниках, передаче силы на расстояние, т. е. в областях, связанных с войной, крупными постройками и т. д., и мало были затронуты ручные (рабочие) механизмы, между тем промышленная революция в Европе пошла именно с усовершенствования рабочих инструментов.

От техники неотделима наука. В классической Греции первое место среди наук занимала философия, которая охватывала все остальные науки. В эллинистическую эпоху философия диферен- цируется. С одной стороны, она превращается в специальную систему знаний о мире, близкую к физике, а с другой-сливается с наукой о человеческом поведении (этикой) и с религией.

В основе научного знания стояла математика с родственными ей дисциплинами-механикой и естествознанием в широком смысле. Центром естественно-математических дисциплин была египетская Александрия с ее знаменитым Александрийским мусейоном. Во главе александрийской школы математиков стоял Эвклид (111 в.), стяжавший мировую славу своими «Элементами математики», отличающимися простотой и ясностью мысли и изящной формой передачи. «Элементы» Эвклида разделялись на три отдела: 1) планиметрия, 2) геометрическая алгебра, т. е. алгебра на геометрической основе, иЗ) стереометрия прямоугсльных Тел. Из теоретических проблем, выдвинутых Эвклидом, наибольший инте.рес представляет учение о бесконечности («теория исчерпаний»), где с большей отчетливостью выступают особенности античной математики.

Кроме Эвклида, из александрийской школы вышел Эратосфен из Кирены (275-195 гг.), знаменитый математик, географ и филолог, глава Александрийской библиотеки. Эратосфен определил длину земного меридиана, объем земли и доказал возможность объехать землю на корабле. Современником Эратосфена был упомянутый Архимед (287-212 гг.), основоположник теории механики и гидравлики, создавший стереометрию круглых тел, определивший отношение окружности к диаметру (число я), создавший теорию рычагов и мн. др.

Выдающимся математиком и астрономом эллинистической Греции считается Гиппарх (160-125 гг.), проживавший на Родосе и в Александрии. Путем сложных математических вычислений и наблюдений Гиппарх определил величину, расстояние и движение солнца, луны и земли и положил начало гелиоцентрической системы, легшей в основу системы Коперника.

Гиппарх составил руководство по сферической, а александриец Герон -по плоскостной тригонометрии. Тот же самый

Герои предвосхитил Папина, открыв свойство пара и исследовав движения автоматов. В области физики заслуживает быть отмеченным перипатетик Стратон (III в.). Выдающийся математик и физик, Стратон во многом освободил аристотелевскую натурфилософию от присущих ей метафизических элементов. Все явления мира Стратон выводил из внутренних (имманентных) необходимостей, объясняя мировые процессы механическими законами. Он же установил значение научного эксперимента в физике.

На высоком уровне в эллинистический период находилась медицина , пользовавшаяся особым покровительством болезненного Птолемея Филадельфа, искавшего «жизненного элексира». Помимо матерйальной поддержки Птолемей разрешил анатомирование трупов преступников, что чрезвычайно расширило сферу экспериментальной медицины. Теоретическому прогрессу медицины не в малой степени способствовало соревнование между различными медицинскими школами-косской, книдской, догматической и эмпирической. Каждая из этих школ имела своп достижения в области анатомии и физиологии, в исследовании функций сердца, кровообращения и деятельности мозга.

О повышении интереса к сельскому хозяйству и агрономии свидетельствует большое число агрономических трактатов, написанных в эллинистическую эпоху. На первом месте стоят сводные трактаты по ботанике, агрономии и общему естествознанию Феофраста (372-287 гг.), ученика Аристотеля и главы перипатетической школы. Феофраст подробнейшим образом исследует качества почвы, ее водоемкость и водопроницаемость, химический состав, качества и вес семян, различные породы растений, сорта естественного и искусственного удобрения, устройство запруд и плотин, описывает разные виды сельскохозяйственных орудий и многое другое. Феофраста с полным правом можно считать основателем науки о почвоведении и ботаники в древнем мире. Но, к сожалению, из сочинений Феофраста по ботанике, зоологии и минералогии сохранились лишь небольшие отрывки. Большой известностью у современников и последующих поколений пользовался трактат Феофраста «Об этических характерах», в котором описываются типы характеров людей (честолюбивых, суеверных, хвастливых и т. д.). «Мнения философов» Феофраста считается первой философией истории античного мира.