Понятие радиоэлектроники. Конспект занятия и презентация на тему "введение в образовательную программу "радиоэлектроника"" Области применения радиоэлектроники

История и развитие радиотехники

Предметом электронной техники является теория и практика применения электронных, ионных и полупроводниковых приборов в устройствах, системах и установках для различных областей народного хозяйства. Гибкость электронной аппаратуры, высокие быстродействия, точность и чувствительность открывают новые возможности во многих отраслях науки и техники.

Радио (от латинского “radiare” - излучать, испускать лучи) -

1). Способ беспроволочной передачи сообщений на расстояние посредством электромагнитных волн (радиоволн), изобретённый русским учёным А.С. Поповым в 1895 г. ;

2). Область науки и техники, связанная с изучением физических явлений, лежащих в основе этого способа, и с его использованием в связи, вещании, телевидении, локации и т.д.

Радио, как уже было сказано выше, открыл великий русский учёный Александр Степанович Попов. Датой изобретения радио принято считать 7 мая 1895 г., когда А.С. Попов выступил с публичным докладом и демонстрацией работы своего радиоприёмника на заседании Физического отделения Русского физико-химического общества в Петербурге.

Развитие электроники после изобретения радио можно разделить на три этапа: радиотелеграфный, радиотехнический и этап собственно электроники.

В первый период (около 30 лет) развивалась радиотелеграфия и разрабатывались научные основы радиотехники. С целью упрощения устройства радиоприёмника и повышения его чувствительности в разных странах велись интенсивные разработки и исследования различных типов простых и надёжных обнаружителей высокочастотных колебаний - детекторов.

В 1904 г. была построена первая двухэлектродная лампа (диод), которая до сих пор используется в качестве детектора высокочастотных колебаний и выпрямителя токов технической частоты, а в 1906 г. появился карборундовый детектор.

Трёхэлектродная лампа (триод) была предложена в 1907 г. В 1913 г. была разработана схема лампового регенеративного приёмника и с помощью триода были получены незатухающие электрические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции ламповыми, что практически решило проблему радиотелефонии. Внедрению электронных ламп в радиотехнику способствовала первая мировая война. С 1913 г. по 1920 г. радиотехника становится ламповой.

Первые радиолампы в России были изготовлены Н.Д. Папалекси в 1914 г. в Петербурге. Из-за отсутствия совершенной откачки они были не вакуумными, а газонаполненными (с ртутью). Первые вакуумные приёмно - усилительные лампы были изготовлены в 1916 г. М.А. Бонч-Бруевичем. Бонч-Бруевич в 1918 г. возглавил разработку отечественных усилителей и генераторных радиоламп в Нижегородской радиолаборатории. Тогда был создан в стране первый научно - радиотехнический институт с широкой программой действий, привлёкший к работам в области радио многих талантливых учёных, молодых энтузиастов радиотехники. Нижегородская лаборатория стала подлинной кузницей кадров радиоспециалистов, в ней зародились многие направления радиотехники, в дальнейшем ставшие самостоятельными разделами радиоэлектроники.

В марте 1919 г. начался серийный выпуск электронной лампы РП-1. В 1920 г. Бонч-Бруевич закончил разработку первых в мире генераторных ламп с медным анодом и водяным охлаждением мощностью до 1 кВт, а в 1923 г. - мощностью до 25 кВт. В Нижегородской радиолаборатории О.В. Лосевым в 1922 г. была открыта возможность генерировать и усиливать радиосигналы с помощью полупроводниковых приборов. Им был создан безламповый приёмник - кристадин. Однако в те годы не были разработаны способы получения полупроводниковых материалов, и его изобретение не получило распространения.

Во второй период (около 20 лет) продолжало развиваться радиотелеграфирование. Одновременно широкое развитие и применение получили радиотелефонирование и радиовещание, были созданы радионавигация и радиолокация. Переход от радиотелефонирования к другим областям применения электромагнитных волн стал возможен благодаря достижениям электровакуумной техники, которая освоила выпуск различных электронных и ионных приборов.

Переход от длинных волн к коротким и средним, а также изобретение схемы супергетеродина потребовали применения ламп более совершенных, чем триод.

В 1924 г. была разработана экранированная лампа с двумя сетками (тетрод), а в 1930 - 1931 г.г. - пентод (лампа с тремя сетками). Электронные лампы стали изготовлять с катодами косвенного подогрева. Развитие специальных методов радиоприёма потребовало создания новых типов многосеточных ламп (смесительных и частотно - преобразовательных в 1934 - 1935 г.г.). Стремление уменьшить число ламп в схеме и повысить экономичность аппаратуры привело к разработке комбинированных ламп.

Освоение и использование ультракоротких волн привело к усовершенствованию известных электронных ламп (появились лампы типа “желудь”, металлокерамические триоды и маячковые лампы), а также разработке электровакуумных приборов с новым принципом управления электронным потоком - многорезонаторных магнетронов, клистронов, ламп бегущей волны. Эти достижения электровакуумной техники обусловили развитие радиолокации, радионавигации, импульсной многоканальной радиосвязи, телевидения и др.

Одновременно шло развитие ионных приборов, в которых используется электронный разряд в газе. Был значительно усовершенствован изобретённый ещё в 1908 г. ртутный вентиль. Появились газотрон (1928-1929 г.г.), тиратрон (1931 г.), стабилитрон, неоновые лампы и т.д.

Развитие способов передачи изображений и измерительной техники сопровождалось разработкой и усовершенствованием различных фотоэлектрических приборов (фотоэлементы, фотоэлектронные умножители, передающие телевизионные трубки) и электронографических приборов для осциллографов, радиолокации и телевидения.

В эти годы радиотехника превратилась в самостоятельную инженерную науку. Интенсивно развивались электровакуумная промышленность и радиопромышленность. Были разработаны инженерные методы расчёта радиотехнических схем, проведены широчайшие научные исследования, теоретические и экспериментальные работы.

И последний период (60-е-70-е годы) составляет эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой и т.д.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались бесцокольные (пальчиковые) и сверхминиатюрные лампы, что даёт возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германивые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 - 200 мвт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 - 70 МГц с мощностями рассеивания, достигающими 100 вт и более. Маломощные же транзисторы (до 0,5 - 0,7 вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 °С, а на основе кремния - не выше +100 ¸ 120 °С. Созданные позже образцы транзисторов на арсениеде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге довелись до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника - направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является “интеграция” электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверх большие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

Используемая литература:

1. Словарь иностранных слов. 9-е изд. Издательство “Русский язык” 1979 г., испр. - М. : “Русский язык”, 1982 г. - 608 с.

2. Виноградов Ю.В. “Основы электронной и полупроводниковой техники”. Изд. 2-е, доп. М., “Энергия”, 1972 г. - 536 с.

3. Журнал “Радио”, номер 12, 1978 г.

История и развитие радиотехники Предметом электронной техники является теория и практика применения электронных, ионных и полупроводниковых приборов в устройствах, системах и установках для различных областей народного хозяйства. Гибкость эл

Лекция №1

1.Введение. Предмет и основные понятия радиоэлектроники.

2.Основные принципы передачи и приема информации.

Введение. Предмет и основные понятия радиоэлектроники.

Радиоэлектроника - собирательное название обширного комплекса областей науки и техники, связанного с проблемами передачи, приема и преобразования информации с помощью электромагнитных колебаний радиочастотного диапазона. Радиоэлектроника охватывает радиотехнику, радиофизику и электронику , а также ряд новых областей, выделившихся в результате их развития и дифференциации. В основном радиоэлектроника «обязана» успехам развития радиотехники.

Радиотехника (от лат. radio - испускаю лучи; от греч. techne - искусство, мастерство) является основным фундаментом радиоэлектроники, и поэтому часто под термином «радиоэлектроника» понимают радиотехнику. В техническом аспекте радиотехника связана с разработкой разнообразных систем, предназначенных для передачи и приема информации с помощью электромагнитных колебаний (в том числе и оптических).

К числу радиотехнических систем относятся:

Системы звукового и телевизионного радиовещания;

Глобальные космические (спутниковые) системы радиосвязи, телевизионного вещания и радионавигации;

Системы подвижной радиосвязи с помощью наземных средств - сотовая,

профессиональная (транкинговая), пейджинговая и беспроводная связь;

Системы связи с воздушными, подвижными наземными объектами,

морскими надводными и подводными судами и другие виды радиосвязи;

Системы радиоуправления, биотелеметрии и радиотелеметрического

контроля разнообразных объектов;

Радиотехнические системы комплексов радиолокационной, противовоздушной и противоракетной обороны;

Метеорологические и информационно-измерительные системы и системы различного мониторинга, в том числе космического;

Мультимедийные и прочие системы.

К радиотехнике относятся также радиоастрономия, радиография, радиовидение, радиоразведка и радиопротиводействие, промышленная электроника и

радиотехника, медицинская радиотехника и пр.

Радиофизика - раздел физики, в котором изучаются физические основы радиотехники. Важнейшими проблемами радиофизики являются исследование возбуждения и преобразования электрических сигналов и помех, а также излучения и распространения электромагнитных колебаний.

Развитие радиотехники непосредственно связано с созданием элементной базы, в частности, с разработкой электронных приборов для систем передачи информации на расстояние с помощью электромагнитных колебаний. Дальнейшее развитие радиотехники непрерывно ставило задачи по созданию и внедрению новых электронных элементов и узлов, что привело к появлению самостоятельной отрасли науки - электроники.

Электроника - наука о взаимодействии заряженных частиц (электронов, ионов) с электромагнитными полями и методах создания электронных приборов и устройств, используемых в основном для передачи, хранения и обработки информации, возникла в начале XX в. Первоначально развивалась вакуумная электроника; на ее основе были созданы электровакуумные приборы. электроника четко разделилась на энергетическую или силовую электронику (мощные выпрямители, инверторы и т. д.) и микроэлектронику. Микроэлектроника - раздел электроники, связанный с созданием интегральных схем - неделимых изделий, выполняющих определенные функции по преобразованию и обработке сигналов и имеющих высокую плотность упаковки

электрически соединенных элементов.

Основные принципы передачи и приема информации.

В радиоэлектронике и технике связи перенос информации в пространстве осуществляется с помощью электромагнитных колебаний (волн). По определению К. Шеннона: «Информация - послание, которое уменьшает неопределенность» Информация - нематериальное свойство материи и подчиняется определенным законам. Важнейший из них закон сохранения информации: «Информация сохраняет свое значение в неизменном виде, пока остается в неизменном виде носитель информации - память». Совокупность знаков (символов), отображающая (несущая) информацию, называется сообщением . Сообщение может быть представлено в виде текста телеграммы, сведений, передаваемых по телефону, радио, телевидению и другим видам радиосвязи, совокупности электронных данных, хранящихся на магнитных носителях - дисках, флэш-памяти (от англ. Flash - «вспышка»; перепрограммируемая постоянная энергонезависимая память, допускающая многократную перезапись), используемых в компьютерах. Последний вид информации получил название электронной . Передают сообщение с помощью материального носителя. Например, при передаче сообщения по почте носителем служит бумага. В радиотехнике и радиосвязи носителями являются различные сигналы. Причем для передачи информации используются специфические сигналы - физические процессы, значения параметров которых отражают передаваемые сообщения. В качестве сигнала можно использовать любой физический процесс, изменяющийся в соответствии с переносимым сообщением. Сигнал - физический процесс (или явление), несущий информацию о состоянии какого-либо объекта наблюдения. По своей физической природе радиотехнические сигналы бывают электрическими, электромагнитными, оптическими, акустическими, магнитостатическими и др. В радиотехнике, радиоэлектронике и системах связи в основном используют электрические (в последние годы и оптические) сигналы. Физической величиной, характеризующей электрический сигнал, является напряжение, несколько реже ток (иногда мощность).

Электрический сигнал u(t) представляет зависимость напряжения от времени. Сигналы, отражающие информацию, могут воздействовать на преобразователи и усилители сигналов. Преобразователи сигналов делятся на два класса. На преобразователи одного класса воздействует физический процесс одной природы (например, звуковой сигнал), а на выходе получается сигнал другой природы (в частности, электрический сигнал на выходе микрофона, телевизионной камеры и пр.). В преобразователях (и усилителях) другого класса осуществляется, как правило, преобразование (и усиление) электрических сигналов без изменений их физической природы. Передаваемые (далее часто, полезные ) сигналы формируют путем изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс изменения параметров носителя сообщений в радиотехнике и связи называют модуляцией. целесообразно ввести параметры передаваемого сигнала, которые являются основными с точки зрения его передачи. Такими параметрами являются длительность сигнала Тс , его ширина спектра Fc и динамический диапазон Dc . Длительность сигнала Тс является естественным его параметром, определяющим интервал времени, в пределах которого данный сигнал существует. Ширина спектра передаваемого сигнала Fc дает представление о скорости изменения этого сигнала внутри интервала его существования. Спектр передаваемого сигнала в принципе может быть неограниченным. Однако для любого сигнала можно указать диапазон частот, в пределах которого сосредоточена его основная (до 90 %) энергия. Этим диапазоном и определяется ширина спектра полезного сигнала.

Источник сообщений (источник информации; information source) может быть аналоговым или дискретным. Выход аналогового источника может иметь любое значение из непрерывного диапазона амплитуд, тогда как выход источника дискретной информации - значения из конечного множества амплитуд.

В обоих случаях для передачи сообщения используется несущее колебание. Несущая необходима для решения двух задач:

а) уменьшения размера антенн (h=λ/4; λ=3*10 8 /f );

б) размещения большого количества станций в эфире.

Процесс, в результате которого один или несколько параметров несущего колебания изменяется по закону передаваемого сообщения, называется модуляцией. Модулированное высокочастотное колебание относят к вторичным сигналам и называют радиосигналом.

Р ис. Временные диаграммы к процессу амплитудной модуляции:

а - модулирующий сигнал; б - несущее колебание; в - АМ-сигнал

Для несущей зависимость напряжения от времени определяется выражением

где U H - амплитуда (максимальная высота синусоиды; заметим, что амплитудой сигнала называют модуль наибольшего его отклонения от нуля, следовательно, амплитуда всегда положительна) в отсутствие модуляции (амплитуда несущего колебания); <ω 0 - угловая (круговая) частота; φ 0 - начальная фаза; Ψ= ω 0 t + φ 0 - полная (текущая или мгновенная) фаза.

Круговая частота ω 0 , период колебаний Т 0 и циклическая частота f 0 = 1/T 0

связаны между собой соотношением

При амплитудной модуляции огибающая амплитудно-модулированного сигнала (АМ-сигнала) U H (t) совпадает по форме с модулирующим сигналом, поэтому выражение примет вид:

Здесь k А - безразмерный коэффициент пропорциональности, такой, что всегда U H (t) ≥ 0.

Аналоговые системы радиосвязи. Упрощенная структурная схема канала аналоговой (с непрерывными сигналами) системы радиосвязи (радиоканала) с так называемой амплитудной модуляцией (AM; от англ. - amplitude modulation, AM) несущего колебания представлена на рис.

Рис. Упрощенная структурная схема канала аналоговой системы радиосвязи

В
общем случае исходное сообщение s = s(t) не является электрическим, может иметь любую физическую природу (подвижное изображение, звуковое колебание и т. п.), и поэтому его необходимо преобразовать в электрический (первичный) сигнал y(t) с помощью электрофизического преобразователя сигнала (ЭФПС), проще преобразователя сигнала, который часто совмещают с кодирующим устройством - кодером. Источником сообщения при телефонной передаче является говорящий; при телевизионной - передаваемое изображение и т. д. При передаче речи и музыки преобразователем сигнала и кодером служит микрофон; при передаче изображения - передающие телевизионные трубки, или специальные матрицы. В телеграфии при преобразовании сигнала последовательность элементов письменного сообщения (букв) с помощью телеграфного аппарата заменяется последовательностью кодовых символов (0, 1 или точка, тире), которая одновременно преобразуется в последовательность электрических импульсов постоянного тока разной длительности, полярности и т. д.

Цифровые (дискретные) системы радиосвязи (digital communication system - DCS). Это системы, в которых и передаваемый и принимаемый сигналы являются последовательностями дискретных символов. Типичным примером такой системы является телеграфия, в которой и сообщение, и сигнал являются последовательностями точек, тире и промежутков между ними. В цифровых (дискретных, импульсных) системах передачи информации энергия полезного сигнала излучается не непрерывно (как при синусоидальном переносчике - гармонической несущей), а в виде коротких импульсов. Это позволяет при той же общей энергии излучения, что и при непрерывном переносчике, увеличить пиковую (максимальную) мощность в соответствующем импульсе и тем самым повысить помехоустойчивость приема. В цифровых системах связи задачей приемника является не точное воспроизведение переданного сигнала, а определение на основе искаженного шумами сигнала, какой именно сигнал из конечного набора был послан передатчиком. В качестве переносчика первичного сигнала e(t) в цифровых системах радиосвязи используют периодическую последовательность видео- и радиоимпульсов.

Упрощенная структурная схема радиоканала цифровой системы связи

Рис. Траектории распространения волн при разных углах падения

Рис. Скачковое метровые электромагнитные колебания, распространение волн пространственными лучами

Рис. Распространение метровых волн

Понятие "радиоэлектроника" образовалось в результате объединения понятий "радиотехника" и "электроника".

Радиотехника - это область науки, использующая электромагнитные колебания радиочастотного диапазона для осуществления передачи информации на большие расстояния.

Электроника - это область науки и техники, использующая явления движения носителей электрического заряда, происходящие в вакууме, газах, жидкостях и твердых телах. Развитие электроники позволило создать элементную базу радиоэлектроники.

Следовательно, радиоэлектроника - собирательное название ряда областей науки и техники, связанных с передачей и преобразованием информации на основе использования радиочастотных электромагнитных колебаний и волн; основные из них - радиотехника и электроника. Методы и средства радиоэлектроники применяются в большинстве областей современной техники и науки .

Основные этапы развития радиоэлектроники

Днем рождения радио считается 7 мая 1895 г., когда А.С. Попов продемонстрировал «прибор для обнаружения и регистрации электрических колебаний». Независимо от Попова, но позже него Маркони в конце 1895 г. повторил опыты Попова по радиотелеграфии.

Изобретение радио явилось логическим следствием развития науки и техники. В 1831 г. М. Фарадей обнаружил явление электромагнитной индукции, в 1860-1865 гг. Дж. К. Максвелл создал теорию электромагнитного поля и предложил систему уравнений электродинамики, описывающих поведение электромагнитного поля. Немецкий физик Г. Герц в 1888 г. впервые экспериментально подтвердил существование электромагнитных волн, нашел способ их возбуждения и обнаружения. Открытие в 1873 г. У. Смитом внутреннего фотоэффекта и в 1887 г. Г. Герцем внешнего фотоэффекта послужило основой технических разработок фотоэлектрических приборов. Открытия этих ученых подготовлены множеством других.

Одновременно шло развитие электронной техники. В 1884 г. Т. Эдисоном открыта термоэлектронная эмиссия, и пока в 1901 г. Ричардсон изучал это явление, уже были созданы электронно-лучевые трубки. Первый электровакуумный прибор с термокатодом - диод - разработан Д.А. Флемингом в 1904г. в Великобритании и использован для выпрямления высокочастотных колебаний в радиоприемнике. В 1905 г. Хелл изобрел газотрон, 1906-1907 гг. ознаменовались созданием в США Д. Форестом трехэлектродного электровакумного прибора, получившего название «триод». Функциональные возможности триода оказались чрезвычайно широки. Он мог применяться в усилителях и генераторах электрических колебаний в широком диапазоне частот, преобразователях частоты и т.д. Первые отечественные триоды изготовили в 1914-1916 гг. независимо Н.Д. Папалекси и М.А.Бонч-Бруевич. В 1919 г. В. Шотки разработал четырехэлектродный вакуумный прибор - тетрод, широкое практическое применение которого началось в период 1924-1929 гг. Работы И. Ленгмюра привели к созданию пятиэлектродного прибора - пентода. Позже появились более сложные и комбинированные электронные приборы. Электроника и радиотехника объединились в радиоэлектронику.

К 1950-1955 гг. был создан и запущен в серийное производство ряд электровакуумных приборов, способных работать на частотах вплоть до миллиметрового диапазона волн. Успехи в разработке и производстве электровакуумных приборов позволили уже в сороковых годах двадцатого века создавать достаточно сложные радиотехнические системы.

Постоянное усложнение задач, решаемых радиоэлектронными системами, требовало увеличения числа используемых в аппаратуре электровакуумных приборов. Разработка полупроводниковых приборов началась несколько позже. В 1922 г. О.В. Лосевым была открыта возможность генерирования электрических колебаний в схеме с полупроводниковым диодом. Большой вклад в теорию полупроводников на начальном этапе внесли советские ученые А.Ф. Иоффе, Б.П. Давыдов, В.Е. Локшарев.

Интерес к полупроводниковым приборам резко возрос после того, как в 1948-1952 гг. в лаборатории фирмы «Белл-Телефон» под руководством У.Б. Шокли был создан транзистор. В небывало короткий срок было начато массовое производство транзисторов во всех промышленно развитых странах.

С конца 50-х - начала 60-х гг. радиоэлектроника становится в основном полупроводниковой. Переход от дискретных полупроводниковых приборов к интегральным схемам, содержащим до десятков-сотен тысяч транзисторов на одном квадратном сантиметре площади подложки и являющимися законченными функциональными узлами, еще больше расширил возможности радиоэлектроники в технической реализации сложнейших радиотехнических комплексов. Таким образом, совершенствование элементной базы привело к возможности создания аппаратуры, способной решать фактически любые задачи в области научных исследований, техники, технологии и т.д. .

Значение радиоэлектроники в жизни современного человека

Радиоэлектроника является важным инструментом техники коммуникаций и связи. Жизнь современного общества немыслима без обмена информацией, который осуществляется с помощью средств современной радиоэлектроники. Ее применяют в системах радиосвязи, радиовещании и телевидении, радиолокации и радионавигации, радиоуправлении и радиотелеметрии, в медицине и биологии, в промышленности и космических проектах. В современном мире без радиоэлектроники невообразимы телевизоры, радиоприемники, компьютеры, космические корабли и сверхзвуковые самолеты.

Следует отметить огромную роль радиотехнических средств в исследовании атмосферы, околоземного пространства, планет солнечной системы, ближнего и дальнего космоса. Последние достижения в освоении солнечной системы, планет и их спутников является наглядным подтверждением.

157kb. 16.07.2007 15:04 784kb. 24.07.2007 12:37 306kb. 24.07.2007 13:43 131kb. 23.07.2007 17:03 83kb. 23.07.2007 17:14 90kb. 23.07.2007 17:04 1012kb. 15.07.2007 03:27 318kb. 15.07.2007 00:08 70kb. 09.02.2011 16:41

1.doc

ВВЕДЕНИЕ

Радиотехника, ее роль в развитии науки, науки, техники и технологии.

Перспективы развития и пути совершенствования радиотехники.

Радиотехника - это наука об электромагнитных колебаниях и отрасль техники, в которой эти колебания применяются для передачи, приема и извлечения информации, содержащейся в при-нимаемых сигналах .

Радио (от латинского “radiare” - излучать, испускать лучи) -

1). Способ беспроволочной передачи сообщений на расстояние посредством электромагнитных волн (радиоволн), изобретённый русским учёным А.С. Поповым в 1895 г. ;

2). Область науки и техники, связанная с изучением физических явлений, лежащих в основе этого способа, и с его использованием в связи, вещании, телевидении, локации и т.д

С момента зарождения радиотехника претерпела существенный скачок и в виде различных технических устройств сопровождает человека повсеместно. К числу областей, где используется радиотехника, относятся следующие:

радиосвязь - электрическая связь, осуществляемая посредством радиоволн. Передача сообщений (сигналов) ведется с помощью радиопередатчика и передающей антенны, а прием - с помощью приемной антенны и радиоприемника;

радиотелефонная связь - электрическая связь, при которой посредством радиоволн передаются телефонные (речевые) сообщения;

радиотелеграфная связь - электрическая связь, при которой посредством радиоволн передаются дискретные сообщения - буквенные, цифровые, знаковые;

радиовещание - одно из средств массовой информации;

радиолокация - наблюдение различных объектов (целей) радиотехническими методами;

радиоастрономия - исследование небесных тел по их радиоиз-лучению с помощью радиотелескопов;

радиография - исследование различных объектов (изделий, минералов, организмов и т.д.) с использованием воздействия излучения радиоактивного изотопа, прошедшего через вещество объекта;

телевидение - передача световых изображений подвижных объектов;

радиовидение - визуальное наблюдение с помощью радиоволн, отраженных или излучаемых, предметов, невидимых невооруженным глазом;

радиотелеметрия - передача на удаленные объекты сигналов и прием данных, полученных при автоматических измерениях;

радиоразведка и радиопротиводействие - получение данных о радиосредствах противника и создание им помех;

радионавигация - применение радиотехнических методов и средств lля вождения судов, самолетов и других подвижных объектов;

промышленная радиоэлектроника - радиоэлектронные устройства, применяемые в промышленности и на транспорте.

Последние годы характеризуются бурным развитием средств радиосвязи, возрождением интереса к радиотехнологиям. Стремление к глобализации и персонализации, желание потребителей иметь связь в любом месте, в любое время и с любым человеком на планете вызвали появление сотовой радиосвязи с подвижными объектами, а совершенствование и удешевление схемотехники сделали экономически выгодным применение радиодоступа или, как сейчас говорят, решение проблемы «последней мили» на основе радиотехнологий.

Существенный скачок отмечается и в развитии таких традиционных радиотехнологий, как телевидение, радиовещание, радиорелейная связь. Так, например, разработаны принципы телевидения высокой четкости (ТВЧ), информационного телевидения и др.

Прогресс в области радиотехнологий достаточно широко освещается в литературе - в специальных журналах появляются статьи, издаются монографии.

Следует заметить, что в настоящее время достаточно трудно выделить области знаний, которые были бы необходимы для практической деятельности только специалистам проводной или же, наоборот, беспроводной связи. Особенно это относится к теоретическим вопросам.

Таким образом, радиотехнические устройства находят широкое применение в различных областях науки и техники. Все эти устройства объединяет одна общая особенность, связанная с тем, что в каждом из них происходит работа с информацией путем передачи, приема и обработки электрических сигналов, в качестве которых выступают электромагнитные волны.

Предметом электронной техники является теория и практика применения электронных, ионных и полупроводниковых приборов в устройствах, системах и установках для различных областей народного хозяйства. Гибкость электронной аппаратуры, высокие быстродействия, точность и чувствительность открывают новые возможности во многих отраслях науки и техники

Радио, как уже было сказано выше, открыл великий русский учёный Александр Степанович Попов. Датой изобретения радио принято считать 7 мая 1895 г., когда А.С. Попов выступил с публичным докладом и демонстрацией работы своего радиоприёмника на заседании Физического отделения Русского физико-химического общества в Петербурге

Развитие электроники после изобретения радио можно разделить на три этапа: радиотелеграфный, радиотехнический и этап собственно электроники

В первый период (около 30 лет) развивалась радиотелеграфия и разрабатывались научные основы радиотехники. С целью упрощения устройства радиоприёмника и повышения его чувствительности в разных странах велись интенсивные разработки и исследования различных типов простых и надёжных обнаружителей высокочастотных колебаний - детекторов

В 1904 г. была построена первая двухэлектродная лампа (диод), которая до сих пор используется в качестве детектора высокочастотных колебаний и выпрямителя токов технической частоты, а в 1906 г. появился карборундовый детектор

Трёхэлектродная лампа (триод) была предложена в 1907 г. В 1913 г. была разработана схема лампового регенеративного приёмника и с помощью триода были получены незатухающие электрические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции ламповыми, что практически решило проблему радиотелефонии. Внедрению электронных ламп в радиотехнику способствовала первая мировая война. С 1913 г. по 1920 г. радиотехника становится ламповой

Первые радиолампы в России были изготовлены Н.Д. Папалекси в 1914 г. в Петербурге. Из-за отсутствия совершенной откачки они были не вакуумными, а газонаполненными (с ртутью). Первые вакуумные приёмно - усилительные лампы были изготовлены в 1916 г. М.А. Бонч-Бруевичем. Бонч-Бруевич в 1918 г. возглавил разработку отечественных усилителей и генераторных радиоламп в Нижегородской радиолаборатории. Тогда был создан в стране первый научно - радиотехнический институт с широкой программой действий, привлёкший к работам в области радио многих талантливых учёных, молодых энтузиастов радиотехники. Нижегородская лаборатория стала подлинной кузницей кадров радиоспециалистов, в ней зародились многие направления радиотехники, в дальнейшем ставшие самостоятельными разделами радиоэлектроники

В марте 1919 г. начался серийный выпуск электронной лампы РП-1. В 1920 г. Бонч-Бруевич закончил разработку первых в мире генераторных ламп с медным анодом и водяным охлаждением мощностью до 1 кВт , а в 1923 г. - мощностью до 25 кВт . В Нижегородской радиолаборатории О.В. Лосевым в 1922 г. была открыта возможность генерировать и усиливать радиосигналы с помощью полупроводниковых приборов. Им был создан безламповый приёмник - кристадин. Однако в те годы не были разработаны способы получения полупроводниковых материалов, и его изобретение не получило распространения

Во второй период (около 20 лет) продолжало развиваться радиотелеграфирование. Одновременно широкое развитие и применение получили радиотелефонирование и радиовещание, были созданы радионавигация и радиолокация. Переход от радиотелефонирования к другим областям применения электромагнитных волн стал возможен благодаря достижениям электровакуумной техники, которая освоила выпуск различных электронных и ионных приборов

Переход от длинных волн к коротким и средним, а также изобретение схемы супергетеродина потребовали применения ламп более совершенных, чем триод

В 1924 г. была разработана экранированная лампа с двумя сетками (тетро), а в 1930 - 1931 г.г. - пентод (лампа с тремя сетками). Электронные лампы стали изготовлять с катодами косвенного подогрева. Развитие специальных методов радиоприёма потребовало создания новых типов многосеточных ламп (смесительных и частотно - преобразовательных в 1934 - 1935 г.г.). Стремление уменьшить число ламп в схеме и повысить экономичность аппаратуры привело к разработке комбинированных ламп

Освоение и использование ультракоротких волн привело к усовершенствованию известных электронных ламп (появились лампы типа “желудь”, металлокерамические триоды и маячковые лампы), а также разработке электровакуумных приборов с новым принципом управления электронным потоком - многорезонаторных магнетронов, клистронов, ламп бегущей волны. Эти достижения электровакуумной техники обусловили развитие радиолокации, радионавигации, импульсной многоканальной радиосвязи, телевидения и др

Одновременно шло развитие ионных приборов, в которых используется электронный разряд в газе. Был значительно усовершенствован изобретённый ещё в 1908 г. ртутный вентиль. Появились газотрон (1928-1929 г.г.), тиратрон (1931 г.), стабилитрон, неоновые лампы и т.д

^ Развитие способов передачи изображений и измерительной техники сопровождалось разработкой и усовершенствованием различных фотоэлектрических приборов (фотоэлементы, фотоэлектронные умножители, передающие телевизионные трубки) и электронографических приборов для осциллографов, радиолокации и телевидения.

В эти годы радиотехника превратилась в самостоятельную инженерную науку. Интенсивно развивались электровакуумная промышленность и радиопромышленность. Были разработаны инженерные методы расчёта радиотехнических схем, проведены широчайшие научные исследования, теоретические и экспериментальные работы

И последний период (60-е-70-е годы) составляет эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой и т.д.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались бесцокольные (пальчиковые) и сверхминиатюрные лампы, что даёт возможность снизить габариты установок, насчитывающих большое количество радиоламп

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германиевые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод.

В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n - переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 - 200 мвт ) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 вт , а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 - 70 МГц с мощностями рассеивания, достигающими 100 вт и более. Маломощные же транзисторы (до 0,5 - 0,7 вт ) могут работать на частотах свыше 500 МГц . Позже появились транзисторы, работающие на частотах порядка 1000 МГц . Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 ° С, а на основе кремния - не выше +100 ¸ 120 ° С. Созданные позже образцы транзисторов на арсениеде галлия оказались работоспособными при температурах до +250 ° С, и их рабочие частоты в итоге довелись до 1000 МГц . Есть транзисторы на карбиде, работающие при температурах до 350 ° С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и , что самое главное, достижения высокой надёжности работы . Эти задачи успешно решает микроэлектроника - направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов

Основной тенденцией микроминиатюризации является “интеграция” электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверх большие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д

Таблица 1. Наиболее важные этапы развития радиотехники


Автор (организатор). Время

Событие

Примечание

краткая формулировка

суть

значимость

Г. Герц (Германия), 1886-1889

Экспериментальное доказательство возможности излучения и существования свободно распространяющегося электромагнитного поля

Были построены простейшие вибраторные системы излучения и приема электромагнитных волн. Конструкция передающего и приемного электрических излучателей представляла собой первую реализацию открытого колебательного контура

Экспериментальное подтверждение теории электромагнитного поля Максвелла. Разработка первых радиотехнических устройств

Г. Герц считал свои опыты чисто научным исследованием, не имеющим практической ценности

Э. Бранди (Франция) 1890

Введение в экспериментальную установку специального индикатора появления электромагнитного поля

В резонансную систему Герца вместо искрового промежутка между элементами приемной антенны был введен когерер - трубка с металлическим порошком, сопротивление которого току от подключенной батареи резко уменьшалось при наведении в антенне ЭДС от внешнего электромагнитного поля

Совершенствование техники физического эксперимента с электромагнитными волнами. Повышение чувствительности индикатора электромагнитного поля

В 1894 г. английский физик О. Лодж применил в аналогичной установке периодическое встряхивание когерера, что позволило сделать индикацию поля периодическим процессом

АС. Попов (Россия), 1895

Создание первого радиоприемного устройства для практических целей

В цепи когерера включена обмотка чувствительного реле, замыкающего мощную цепь сигнального звонка, что существенно повышало чувствительность приемника. Периодический процесс возрастания то-ка в цепи когерера, срабатывания реле, включения звонка, встряхивающего когерер, продолжался до тех пор, пока на приемное устройство воздействовало электромагнитное поле

Доказательство возможности применения электромагнитных волн для передачи со-общения и других практических целей

Позднее в том же 1895 г. гро-зоотметчик А.С. Попова, усовершенство-ванный введением вертикальной антенны, стал применять-ся для грозового предупреждения на Нижегородской электростанции. Его дальность действия составляла 30 км

А.С. Попов (Россия), 1896, март

Экспериментальное подтверждение возможности беспроволочной связи

Применив телеграфный аппарат в сочетании со своим приемным прибором, А.С. Попов обеспечил возможность записи принимаемых сигналов на телеграфную ленту. Первая в мире радиограмма была составлена из слов «Генрих Герц»

Доказательство возможности технического обеспечения беспроволочной телеграфной связи

В 1889 г. помощник А.С. По-пова П.Н. Рыбкин обнаружил возможность радиоприема на слух, что резко увеличило дальность связи

Автор (организатор). Время

Событие

Примечание

краткая формулировка

суть

значимость

Г. Маркони (Италия), 1896, июль - август

Подача заявки на патент на устройство беспроволочного телеграфирования

Передающее устройство заявке было аналогично излучателю Г. Герца, приемное - тождественно приемнику А.С. Попова

Маркони получил патент в 1897 г. Это стало свидетельством признания практической значимости зарождающейся радиотехники

Л С. Попов (Россия), 1900, февраль

Организация пер-вой практической линии радиосвязи

была обеспечена радиосвязь между городом Сотка и островом Гогланд, где шли работы по снятию с камней броненосца «Генерал-адмирал Апраксин». Протяженность радиолинии составляла 44 км

Начало практической радиосвязи радиотехники

За время работы этой линии связи А.С. Поповым на борт ледокола «Ермак» была передана радиограмма с заданием (выполненным успешно и вовремя) спасти унесенных на льдине рыбаков

Ли де Форест (США), 1906

Изобретение усилительного электровакуумного прибора - лампового триода

Введение в электровакуумный диод между анодом и катодом третьего электрода - управляющей сетки, что позволяло усиливать слабые радиосигналы

Начало эпохи «активной» радиотехники. Открытие широких возможностей усиления слабых сигналов

Мейснер (Германия), 1913

Изобретение лампового генератора электрических колебаний

Построение замкнутой колебательной системы, в которой восполнение потерь энергии электрических колебаний и их режим обеспечивались с помощью лампового триода

Создание ламповых передатчиков, возрастание их мощности. Начало внедрения гетеродинного метода радиоприема

М А. Бонч-Ьруевич и др. (СССР), 1934

Разработка первой в мире радиолокационной станции (РЛС)

Коллективом инженеров во главе с М.А. Бонч-Бруевичем была создана первая РЛС, работаю-щая в непрерывном режиме

Начало практических работ по раз работке принципов и техники радиолокации

В период 1937-1938 гг. в США, Англии и СССР были созданы импульсные РЛС

Дж. Бардин, У Браттейн (США), 1948

Изобретение транзистора

Соединение кристаллов германия, обладающих электронной п- и «дырочной» р- полупрово-димостями, в структуру p-n-р или n-p-п позволило создать схемы управления электрическими токами в относительно мощных цепях с помощью слабых токов R

Расширение границ применений, повышение на-дежности и экономичности радиоэлектронной аппаратуры, значительное уменьшение ее габаритов