Изменение свойств элементов по периодам и группам. Тест «Закономерности изменения химических свойств элементов и их соединений по периодам и группам. Изменение свойств элементов в пределах периода

    Современная формулировка Периодического закона : свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов (порядкового номера).

    Периодическими свойствами являются, например, радиус атома, энергия ионизации, сродство к электрону, электроотрицательность атома, а также некоторые физические свойства элементов и соединений (температуры плавления и кипения, электропроводность и т.д.).

    Выражением Периодического закона является

    периодическая система элементов .

    Наиболее распространен вариант короткой формы периодической системы, в котором элементы разделены на 7 периодов и 8 групп.

    В настоящее время получены ядра атомов элементов до номера 118. Название элемента с порядковым номером 104 – резерфордий (Rf), 105 – дубний (Db), 106 – сиборгий (Sg), 107 – борий (Bh), 108 – хассий (Hs), 109 – мейтнерий (Mt), 110 - дармштадтий (Ds), 111 - рентгений (Rg), 112 - коперниций (Cn).
    24 октября 2012 года в Москве в Центральном доме ученых РАН состоялась торжественная церемония присвоения 114-му элементу имя "флеровий" (Fl), а 116-му - "ливерморий" (Lv).

    Периоды 1, 2, 3, 4, 5, 6 содержат соответственно 2, 8, 8, 18, 18, 32 элемента. Седьмой период не завершен. Периоды 1, 2 и 3 называют малыми, остальные – большими.

    В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства, поскольку с ростом положительного заряда ядер атомов возрастает число электронов на внешнем электронном слое и наблюдается уменьшение радиусов атомов.

    В нижней части таблицы помещаются 14 лантаноидов и 14 актиноидов. В последнее время лантан и актиний стали причислять соответственно к лантаноидам и актиноидам.

    Группы делятся на подгруппы – главные, или подгруппы А и побочные, или подгруппы Б. Подгруппа VIIIБ – особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

    Сверху вниз в главных подгруппах усиливаются металлические свойства и ослабевают неметаллические.

    Номер группы, как правило, указывает на число электронов, которые могут участвовать в образовании химических связей. В этом состоит физический смысл номера группы. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних слоёв. Это является основным различием в свойствах элементов главных и побочных подгрупп.

    Периодическая система и электронные формулы атомов

    Для предсказания и объяснения свойств элементов необходимо уметь записывать электронную формулу атома.

    В атоме, находящемся в основном состоянии , каждый электрон занимает свободную орбиталь с наиболее низкой энергией. Энергетическое состояние определяется, прежде всего, температурой. Температура на поверхности нашей планеты такова, что атомы находятся в основном состоянии. При высоких температурах основными уже будут другие состояния атомов, которые называются возбуждёнными .

    Последовательность расположения энергетических уровней в порядке возрастания энергии известна из результатов решения уравнения Шредингера:

    1s < 2s < 2p < 3s < Зр < 4s 3d < 4p < 5s 4d < 5p < 6s 5d 4f < 6p.

    Рассмотрим электронные конфигурации атомов некоторых элементов четвертого периода (рис. 6.1).

    Рис. 6.1. Распределение электронов по орбиталям некоторых элементов четвёртого периода

    Следует отметить существование некоторых особенностей в электронном строении атомов элементов четвёртого периода: у атомов Сr и С u на 4 s -оболочке находятся не два электрона, а один, т. е. происходит “провал” внешнего s-электрона на предшествующую d-оболочку.

    Электронные формулы атомов 24 Cr и 29 Cu можно представить следующим образом:

    24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 ,

    29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

    Физическая причина “нарушения” порядка заполнения связана с разной проникающей способностью электронов во внутренние слои, а также особой устойчивостью электронных конфигураций d 5 и d 10 , f 7 и f 14 .

    Все элементы подразделяются на четыре типа

    :

    1. У атомов s-элементов заполняются s-оболочки внешнего слоя ns. Это первые два элемента каждого периода.

    2. У атомов р-элементов электронами заполняются р-оболочки внешнего уровня np. К ним относятся последние 6 элементов каждого периода (кроме первого и седьмого).

    3. У d-элементов заполняется электронами d-подуровень второго снаружи уровня (n-1)d. Это элементы вставных декад больших периодов, расположенных между s- и p-элементами.

    4. У f-элементов заполняется электронами f-подуровень третьего снаружи уровня (n-2)f. Это - лантаноиды и актиноиды.

    Изменение кислотно-основных свойств соединений элементов по группам и периодам периодической системы
    (схема Косселя)

    Для объяснения характера изменения кислотно-основных свойств соединений элементов Коссель (Германия, 1923 г.) предложил использовать простую схему, основанную на предположении о том, что в молекулах существует чисто ионная связь и между ионами имеет место кулоновское взаимодействие. Схема Косселя описывает кислотно-основные свойства соединений, содержащих связи Э–Н и Э–О–Н, в зависимости от заряда ядра и радиуса образующего их элемента.

    Схема Косселя для двух гидроксидов металлов (для молекул LiOH и KOH) показана на рис. 6.2. Как видно из представленной схемы, радиус иона Li + меньше радиуса иона К + и ОН - -группа связана прочнее с ионом лития, чем с ионом калия. В результате КОН будет легче диссоциировать в растворе и основные свойства гидроксида калия будут выражены сильнее.

    Рис. 6.2. Схема Косселя для молекул LiOH и KOH

    Аналогичным образом можно проанализировать схему Косселя для двух оснований CuOH и Cu(OH) 2 . Поскольку радиус иона Cu 2+ меньше, а заряд – больше, чем у иона Cu + , ОН - -группу будет прочнее удерживать ион Cu 2+ .
    В результате основание
    Cu(OH) 2 будет более слабым, чем CuOH.

    Таким образом, сила оснований возрастает при увеличении радиуса катиона и уменьшении его положительного заряда .

    Схема Косселя для двух бескислородных кислот HCl и HI показана на рис. 6.3.

    Рис. 6.3. Схема Косселя для молекул HCl и HI

    Поскольку радиус хлорид-иона меньше, чем иодид-иона, ион Н + прочнее связан с анионом в молекуле хлороводородной кислоты, которая будет слабее, чем иодоводородная кислота. Таким образом, сила бескислородных кислот возрастает с увеличением радиуса отрицательного иона.

    Сила кислородсодержащих кислот изменяется противоположным образом. Она увеличивается с уменьшением радиуса иона и с увеличением его положительного заряда. На рис. 6.4 представлена схема Косселя для двух кислот HClO и HClO 4 .

    Рис. 6.4. Схема Косселя для HClO и HClO 4

    Ион С1 7+ прочно связан с ионом кислорода, поэтому протон легче будет отщепляться в молекуле НС1О 4 . В то же время связь иона С1 + с ионом О 2- менее прочная, и в молекуле НС1О протон будет сильнее удерживаться анионом О 2- . В результате HClO 4 является более сильной кислотой, чем HClO.

    Таким образом, увеличение степени окисления элемента и уменьшение радиуса иона элемента усиливают кислотный характер вещества. Наоборот, уменьшение степени окисления и увеличение радиуса иона усиливают основные свойства веществ.

    Примеры решения задач

    Составить электронные формулы атома циркония и ионов
    O 2– , Al 3+ , Zn 2+ . Определить, к какому типу элементов относятся атомы Zr, O, Zn, Al .

      40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 ,

      O 2– 1s 2 2s 2 2p 6 ,

      Zn 2+ 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 ,

      Al 3+ 1s 2 2s 2 2p 6 ,

    Zr – d-элемент , O – р -элемент , Zn – d-элемент , Al – р -элемент .

    Расположить атомы элементов в порядке увеличения их энергии ионизации: K, Mg, Be, Ca. Ответ обосновать.

    Решение. Энергия ионизации – энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра, в главных подгруппах сверху вниз она уменьшается, так как увеличивается расстояние от электрона до ядра.

    Таким образом, величина энергии ионизации атомов этих элементов увеличивается в ряду K, Ca, Mg, Be.

    Расположить атомы и ионы в порядке возрастания их радиусов: Ca 2+ , Ar, Cl – , K + , S 2– . Ответ обосновать.

    Решение. Для ионов, содержащих одинаковое число электронов (изоэлектронных ионов), радиус иона будет увеличиваться с уменьшением положительного и возрастанием отрицательного его заряда. Следовательно, радиус возрастает в ряду Ca 2+ , K + , Ar, Cl – , S 2– .

    Определите, как меняются радиусы ионов и атомов в рядах Li + , Na + , K + , Rb + , Cs + и Na, Mg, Al, Si, P, S.

    Решение. В ряду Li + , Na + , K + , Rb + , Cs + радиус ионов увеличивается, так как возрастает число электронных слоев у ионов одинакового знака со сходным электронным строением.

    В ряду Na, Mg, Al, Si, P, S радиус атомов уменьшается, так как при одинаковом числе электронных слоев в атомах увеличивается заряд ядра, а, значит и притяжение ядром электронов.

    Сравнить силу кислот H 2 SO 3 и H 2 SeO 3 и оснований Fe(OH) 2 и Fe(OH) 3 .

    Решение. Согласно схеме Косселя H 2 SO 3 более сильная кислота, чем H 2 SeO 3 , так как радиус иона Se 4+ больше радиуса иона S 4+ , значит, связь S 4+ – О 2– является более прочной, чем связь Se 4+ – О 2– .

    Согласно схеме Косселя Fe(OH)

    2 более сильное основание, поскольку радиус иона Fe 2+ больше, чем иона Fe 3+ . К тому же заряд иона Fe 3+ больше, чем у иона Fe 2+ . В результате связь Fe 3+ – О 2– является более прочной, чем Fe 2+ – О 2– и ион ОН – легче отщепляется в молекуле Fe(OH) 2 .

    Задачи для самостоятельного решения

    6.1. Составить электронные формулы элементов с зарядом ядра +19, +47, +33 и находящихся в основном состоянии. Указать, к какому типу элементов они относятся. Какие степени окисления характерны для элемента с зарядом ядра +33?


    6.2. Составить электронную формулу иона Cl – .

Немного теории

Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса»

В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов». Периодичность - это повторяемость (цикличность) явления через определенные промежутки времени.

Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов. Свойства атомов и их соединений повторяются через определенные промежутки (периоды).

Периодом в периодической системе называется последовательность элементов, расположенных в порядке возрастания заряда ядра, начинающаяся водородом или щелочным металлом и заканчивающаяся инертным газом. Началу периода соответствует начало заполнения электронами нового энергетического уровня.

Элементы, расположенные в одном вертикальном столбце короткой формы периодической таблицы, образуют одну группу . Каждая группа состоит из двух подгрупп. Подгруппы, в которые входят элементы как больших, как и малых периодов, называются главными. В короткой форме таблицы символы элементов, относящихся к главной и побочной подгруппам одной группы, записывают со смещением к противоположным краям клетки, так что они образуют как бы две вертикальные последовательности в пределах одного столбца. в длинной форме таблицы их помещают в разных столбцах, обозначая как подгруппы А и Б. В любой из главных подгрупп (А) электронные конфигурации элементов аналогичны, т.е. на внешнем уровне имеется одинаковое количество электронов. Вследствие этого такие элементы обнаруживают большое сходство между собой, что конкретно проявляется в сходстве образуемых ими простых и сложных веществ. Иными словами, элементы одной главной подгруппы – полные аналоги.

Основные закономерности изменения свойств в периодах:

1. Возрастает электроотрицательность элемента, т.е. уменьшается способность атомов терять электроны и увеличивается способность присоединять их. Это связано с увеличением заряда ядра, вследствие чего внешние электроны, находящиеся на одном уровне, все сильнее притягиваются ядром. В результате в начале периода находятся типичные электроположительные элементы (металлы), а в конце периода, перед инертными газами – типичные электроотрицательные элементы (неметаллы).

2. Увеличивается максимальная положительная степень окисления, равная числу электронов на внешнем уровне, т.е. номеру группы, за исключением кислорода и фтора.

3. Для электроотрицательных элементов убывает по абсолютной величине отрицательная степень окисления, равная восьми минус номер группы.

4. Ослабевают основные свойства оксидов и гидроксидов элементов и одновременно усиливаются их кислотные свойства.

В главных подгруппах с увеличением заряда ядра свойства элементов, а также соответствующих им простых веществ и соединений изменяются следующим образом:

1. Уменьшается электроотрицательность элемента, соответственно усиливаются металлические свойства и ослабевают неметаллические. Например, в V группе азот – типичный неметалл, фосфор – неметалл, у которого одно из аллотропных видоизменений обладает значительной электропроводностью (черный фосфор), мышьяк и сурьма – элементы, занимающие промежуточное положение между типичными металлами и типичными неметаллами, и, наконец, висмут – металл.

2. Усиливаются основные свойства оксидов и гидроксидов. (Следует помнить, что кислотно-основные свойства оксида или гидроксида зависят еще и от степени окисления элемента. Поэтому сравнивать следует соединения с одинаковыми степенями окисления элементов-аналогов).

Изменение атомных радиусов:

Одним из важнейших законов природы является периодический закон, открытый в 1869 г. Менделеевым, который он сформулировал так: "Свойства простых веществ, также формы и свойства соединений находятся в периодической зависимости от атомных весов элементов".

С развитием квантовой химии периодический закон получил строгое теоретическое обоснование, а с ним и новую формулировку: "Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины зарядов ядер их атомов".

До Менделеева многие пытались систематизировать элементы, наиболее близко подошел Майер (Германия). В 1864 г. в своей книге он привел таблицу, в которой элементы были также расположены в порядке возрастания их атомных масс, но в эту таблицу Майер поместил всего 27 элементов, меньше половины, известных в то время. Заслуга Менделеева, что в его таблице нашлось место не только всем известным элементам, но были оставлены пустые места для еще не открытых элементов (экабор – Sc, экаалюминий – Ga, экасилиций – Ge).

С точки зрения электронного строения атома:

Периодом называют горизонтальную последовательность элементов, начинающуюся со щелочного металла и заканчивающуюся благородным газом с тем же максимальным значением главного квантового числа, равного номеру периода.

Число элементов в периоде определяется емкостью подуровней.

Группой элементов называют вертикальную совокупность элементов, обладающую однотипной электронной конфигурацией и определенным химическим сходством. Номер группы (за исключением I, II, VIII побочных подгрупп) равен сумме валентных электронов.

Кроме деления по периодам (определяемое главным квантовым числом) существует деление на семейства , определяемое орбитальным квантовым числом. Если у элемента заполняется s-подуровень, то s-семейство или s-элемент; p-подуровень – p‑элемент; d-подуровень – d-элемент; f-подуровень – f-элемент.

В короткопериодной форме периодической системы 8 групп, каждая из которых делится на главную и побочную подгруппы. I и II главные подгруппы заполняются s-элементами; III‑VIII главные подгруппы – р-элементами. d-элементы находятся в побочных подгруппах. f-элементы вынесены в отдельные группы.

Таким образом, каждый элемент в периодической системе элементов занимает строго определенное место, которое отмечается порядковым номером и связано со строением электронных оболочек атома.

1.2.1. Закономерности изменения свойств элементов и их соединений по периодам и группам

Экспериментальными исследованиями была установлена зависимость химических и физических свойств элементов от их положения в периодической системе.

Энергией ионизации называется энергия, которую надо затратить для отрыва и удаления электрона от атома, иона или молекулы. Она выражается в Дж или эВ (1эВ=1,6 . 10 -19 Дж).

Энергия ионизации является мерой восстановительной способности атома. Чем ниже значение энергии ионизации, тем выше восстановительная способность атома. Атомы, теряя электрон, превращаются в положительно заряженные ионы.

Сродство к электрону называется энергия, которая выделяется при присоединении электрона к атому, молекуле или радикалу.

Энергия сродства к электрону атомов закономерно изменяется в соответствии с характером электронных структур атомов элементов. В периодах слева направо сродство к электрону и окислительные свойства элементов возрастают. В группах сверху вниз сродство к электрону, как правило, уменьшается.

Галогены отличаются самым высоким сродством к электрону, т.к. присоединяя один электрон к нейтральному атому, она приобретает законченную электронную конфигурацию благородного газа.

Характеристика о том, какой из атомов легче отдает или присоединяет электрон, называется электроотрицательностью которая равна полусумме энергии ионизации и сродства к электрону.

Электроотрицательность возрастает в направлении слева направо для элементов каждого периода и уменьшается в направлении сверху вниз для элементов одной и той же группы ПС.

Атомные и ионные радиусы

Атомы и ионы не имеют строго определенных границ вследствие волновой природы электронов. Поэтому определяют условные радиусы атомов и ионов, связанных друг с другом химической связью в кристаллах.

Радиусы атомов металлов в периодах с ростом порядкового номера элементов уменьшаются , т.к. при одинаковом числе электронных слоев возрастает заряд ядра, а, следовательно, и притяжение им электронов.

В пределах каждой группы элементов, как правило, радиусы атомов увеличиваются сверху вниз , т.к. возрастает число энергетических уровней. Радиусы ионов также находятся в периодической зависимости от порядкового номера элемента.

Пример. Как изменяются размеры атомов внутри периода, при переходе от одного периода к другому и в пределах одной группы? Какие элементы имеют минимальное и максимальное значения размера атома?

Внутри периода (слева направо) размеры атомов уменьшаются, т.к. увеличивается заряд ядра и электроны сильнее притягиваются к ядру. В главных подгруппах размеры атомов увеличиваются, т.к. увеличивается число электронных слоев. В побочных подгруппах такие изменения меньше заметны, за счет d -сжатия, а при переходе из V в VI период происходит даже уменьшение уменьшение размеров атомов за счет f -сжатия.

Согласно этим правилам минимальное значение размера атома имеет гелий , а максимальное – цезий . Франций не имеет долгоживущих изотопов (природный изотоп радиоактивен, период полураспада 21 минута).

Металлы и неметаллы. Деление элементов и простых веществ на металлы и неметаллы в известной степени условно.

По физическим свойствам металлы характеризуются высокой теплопроводностью и электрической проводимостью, отрицательным температурным коэффициентом проводимости, специфическим металлическим блеском, ковкостью, пластичностью и т.п.

По химическим свойствам металлы характеризуются основными свойствами оксидов и гидроксидов и восстановительными свойствами.

Подобные различия в свойствах простых веществ связаны с характером химической связи при их образовании. Металлическая связь в металлах образуется при дефиците валентных электронов, а ковалентная в неметаллах при их достаточном количестве. Исходя из этого, можно провести вертикальную границу между элементами IIIA и IV групп. Слева – элементы с дефицитом валентных электронов, справа – с избытком. Это граница Цинтля.

Пример. Чем отличаются типичные металлы от неметаллов? Почему и как изменяются металлические свойства с увеличением порядкового номера элементов?

В периодической системе элементов в основном находятся металлы, неметаллов немного (всего 22). К металлам относятся все s -элементы. Это связано с наличием у них малого числа валентных электронов (1 или 2), в результате этого дефицита электронов образуется металлическая связь.

Все d - и f -элементы тоже являются металлами. При образовании химических связей в качестве валентных электронов у атомов d -элементов выступают s -электроны внешнего энергетического уровня и часть или все d -электроны предпоследнего уровня, причем d -электроны участвуют в образовании химических связей лишь после того, как будут связаны все внешние s -электроны. Кроме того, легкости удаления s -электронов способствует эффект экранирования заряда ядра. Он состоит в уменьшении воздействия на электрон положительного заряда ядра из-за наличия между рассматриваемым электроном и ядром других электронов (это d - или f -электроны).

У р-элементов происходит конкуренция между увеличением числа валентных электронов (неметаллические свойства) и экранированием заряда ядра (усиливаются металлические свойства). В связи с этим у р-элементов по подгруппе сверху вниз увеличивается устойчивость низших степеней окисления.

По периоду справа налево увеличиваются неметаллические свойства атомов, за счет увеличения заряда ядра атома и трудности отдачи электронов. По подгруппе сверху вниз увеличиваются металлические свойства, т. к. ослабевает связь внешних электронов с ядром.

Свойства соединений подразделяются на кислотно-основные и окислительно-восстановительные. Периодическая система элементов хорошо объясняет эти закономерности. Рассмотрим это на примере гидроксидов.

Если элемент имеет степень окисления маленькую (+1 или +2), например, Na-O-H, то связь Na-O менее прочная, чем O-H и разрыв связи происходит по менее прочной связи.

Na-O-H  Na + + OH - . Соединение обладает основными свойствами.

Если степень окисления элемента большая (от +5 до +7), то связь элемент – кислород прочнее, чем связь О-Н и соединение обладает кислотными свойствами. В азотной кислоте степень окисления азота большая (+5).

H + + NO 3 -

Соединения в степени окисления +3 и +4 проявляют амфотерные свойства, т.е. в зависимости от партнера по реакции могут проявлять как кислотные, так и основные свойства. Но есть исключения Zn +2 , Be +2 , Sn +2 , Pb +2 , Ge +2 имеют степень окисления +2, но являются амфотерными соединениями.

По периоду справа налево увеличивается высшая степень окисления, равная номеру группы, поэтому увеличиваются неметаллические и кислотные свойства .

По подгруппе сверху вниз увеличиваются металлические и основные свойства , т.к. увеличивается размер атома и связь с соседним атомом ослабляется.

Таким образом, периодическая система позволяет проанализировать положение простых веществ в связи с особенностями их свойств (металлы, неметаллы).

Периодический закон Менделеева дает возможность определять и свойства простых веществ в химических соединениях. Впервые предсказание свойств было осуществлено самим Менделеевым. Он рассчитал свойства и тех элементов, которые еще не были открыты.

в периодах слева направо:

· радиус атомов уменьшается;
· электроотрицательность элементов увеличивается;
· количество валентных электронов увеличивается от 1 до 8 (равно номеру группы);
· высшая степень окисления увеличивается (равна номеру группы);
· число электронных слоев атомов не изменяется;
· металлические свойства уменьшается;
· неметаллические свойства элементов увеличивается.

Изменение некоторых характеристик элементов в группе сверху вниз:
· заряд ядер атомов увеличивается;
· радиус атомов увеличивается;
· число энергетических уровней (электронных слоев) атомов увеличивается (равно номеру периода);
· число электронов на внешнем слое атомов одинаково (равно номеру группы);
· прочность связи электронов внешнего слоя с ядром уменьшается;
· электроотрицательность уменьшается;
· металличность элементов увеличивается;
· неметалличность элементов уменьшается.

Элементы, которые находятся в одной подгруппе, являются элементами-аналогами, т.к. они имеют некоторые общие свойства (одинаковую высшую валентность, одинаковые формы оксидов и гидроксидов и др.). Эти общие свойства объясняются строением внешнего электронного слоя.

Подробнее про закономерности изменения свойств элементов по периодам и группам

Кислотно — основные свойства гидроксидов зависят от того, какая из двух связей в цепочке Э −О − Н является менее прочной.
Если менее прочна связь Э−О, то гидроксид проявляет основные свойства, если О−Н − кислотные.
Чем менее прочны эти связи, тем больше сила соответствующего основания или кислоты. Прочность связей Э−О и О−Н в гидроксиде зависит от распределения электронной плотности в цепочке Э−О− H. На последнюю наиболее сильно влияют степень окисления элемента и ионный радиус. Увеличение степени окисления элемента и уменьшение его ионного радиуса, вызывают смещение электронной плотности к атому
элемента в цепочке Э ← О ←Н. Это приводит к ослаблению связи О−Н и усилению связи Э−О. Поэтому основные свойства гидроксида ослабевают, а кислотные − усиливаются.


Здесь собраны задачи к разделу Периодический закон Д.И. Менделеева и периодическая система химических элементов

Задача 1. Как изменяются свойства гидроксидов элементов в периодах и группах с увеличением порядкового номера? Почему?

Решение. Металлы могут образовывать и основные, и кислотные, и амфотерные гидроксиды. При этом с увеличением степени окисления металла (при движении слева направо в основной характер его оксидов и гидроксидов ослабляется, а кислотный усиливается.

Например

Сила оснований слева направо уменьшается, а сверху вниз растет, так же как металлические свойства растут сверху вниз.

Например , Cs (цезий) более активный металл, чем К (калий), так как у Cs валентный электрон находится дальше от ядра, чем у К (калия) и Cs легче отдает электрон (так как притяжение ядра ослабевает).

Если один элемент может иметь разные степени окисления, то с увеличением степени окисления элемента сила основания уменьшается, больше проявляется кислотный характер образуемого соединения, например

Cr +2 (OH) 2 Cr +3 (OH) 3 ≡H 3 CrO 3 H 2 CrO 4

основание амфотерный гидроксид кислота

основной характер ослабляется, кислотный характер усиливается

Неметаллы не образуют основные и амфотерные оксиды. Практически все оксиды неметаллов являются кислотными.

Например , Na 2 O – основной оксид, NaOH – основание

SO 3 – кислотный оксид, H 2 SO 4 – кислота

Al 2 O 3 – амфотерный оксид, может образовывать, как основание (Al(OH) 3), так и кислоту HAlO 2 или H 3 AlO 3 .

Задача 2. Какова современная формулировка Периодического закона? В чем причина периодической зависимости свойств элементов и образуемых ими соединений от заряда ядра атомов?

Решение. : Свойства элементов и их соединений находятся в периодической зависимости от заряда ядра атома, или порядкового номера элемента.

Свойства элементов , в первую очередь, определяются структурой внешнего электронного слоя их атомов. Поэтому элементы одной подгруппы имеют сходные свойства.

При увеличении порядкового номера (заряда ядра) в атомах элементов последовательно увеличивается общее число электронов, а число электронов на внешнем электронном слое изменяется периодически, что приводит к периодическому изменению свойств химических элементов.

Деление элементов на периоды обусловлено числом энергетических уровней: в одном периоде объединены элементы, имеющие одинаковое число энергетических уровней (электронных слоев), равное номеру периода.

Деление на группы и подгруппы обусловлено порядком заполнения электронами уровней и подуровней: элементы главных подгрупп состоят из s- и p- элементов (т.е. из элементов, у которых заполняется либо s-, либо р- подуровень).

Элементы побочных подгрупп состоят из d- и f- элементов (заполняется d- или f- подуровень).

Многие свойства элемента (радиус атома, электроотрицательность, степень окисления, энергия ионизации, сродство к электрону) связаны со строением электронных оболочек, поэтому вместе с последними обладают периодичностью.

Свойства элементов, в первую очередь, определяются структурой внешнего электронного слоя их атомов. Поэтому элементы одной подгруппы имеют сходные свойства.

Задача 3. Проанализируйте изменения величины зарядов ядер, радиусов. Атомов, электроотрицательностей и степеней окисления 4 периода. Каковы закономерности этих изменений при движении — по группе сверху вниз или по периоду слева направо? Как изменяется в этом направлении металличность элементов и характер их оксидов и гидроксидов?

Решение. Номер периода показывает число электронных слоев, номер внешнего электронного слоя, число энергетических уровней, номер высшего энергетического уровня, значение главного квантового числа для высшего энергетического уровня.

Элементы четвертого периода имеют главное квантовое число n = 4.

Электронных слоев – 4.

Четвертый период заканчивается благородным газом. После двух s-элементов (К и Са) следуют 10 элементов (от Sc до Zn), в атомах которых электроны в последнюю очередь заполняют d-подуровень предвнешнего электронного слоя (d-элементы). У Cr и Cu наблюдается проскок электрона. Завершают период p-элементы.

Слева направо заряд ядра растет, так как идет заполнение орбиталей и число электронов и протонов растет.

Слева направо атомные радиусы элементов уменьшаются, так как растет атомное притяжение.

Энергия ионизации увеличивается . Так как элементы с левой стороны таблицы стремятся потерять электрон, чтобы походить на ближайший благородный газ (приобрести устойчивую структуру), поэтому для отрыва электрона не требуется много энергии. Элементы с правой стороны таблицы стремятся приобрести электрон. Следовательно, для отрыва электрона требуется больше энергии.

В группах сверху вниз металичность элементов усиливается, а энергия ионизации уменьшается. Причина этого в том, что электроны с низких энергетических уровней отталкивают от ядра электроны с высоких энергетических уровней, поскольку и те и другие имеют отрицательный заряд.

Так как в каждом следующем ряду на один энергетический уровень больше, чем в предыдущем, атомные радиусы увеличиваются (сверху вниз).

Высшая степень окисления и металлов и неметаллов, как правило, равна номеру группы. Низшая степень окисления металлов равна нулю (в простых веществах – металлах). Низшая степень окисления неметаллов равна 8 – номер группы. Например, для брома степень окисления = 7 – 8 = -1.

Кислотными являются почти все оксиды неметаллов, а также оксиды металлов, в которых металл имеет степень окисления +5 и выше (CrO 3 , Mn 2 O 7).

Оксиды и гидроксиды металлов со степенью окисления +3, +4 в большинстве своем, являются амфотерными. И некоторые оксиды металлов со степенью окисления +2 (ZnO, MnO 2).

Неметаллы не образуют основные и амфотерные оксиды.

Основными оксидами и гидроксидами являются оксиды и гидроксиды металлов со степенью окисления +1 (K 2 O), большинство оксидов и гидроксидов металлов со степенью окисления +2 (CaO) и некоторых оксидов металлов со степенью окисления +3.

Задача 4. Составьте формулы оксидов и гидроксидов марганца. Как изменяется кислотно-основной и окислительно-восстановительный характер этих соединений? Подчиняются ли эти соединения общей закономерности изменения свойств оксидов и гидроксидов?

Решение. Для марганца характерны степени окисления +2, +4,+7, существуют соединения в которых он проявляет степени окисления +3, +5, +6.

Соединения марганца могут проявлять как окислительные, так и восстановительные свойства, в зависимости степени окисления Mn. Если в соединении марганец находится в своей высшей степени окисления, то он будет проявлять окислительные свойства, если в соединении марганец находится в своей низшей степени окисления, то он будет проявлять восстановительные свойства. И окислителем и восстановителем марганец выступает в своих промежуточных степенях окисления.

Свойства оксидов и гидроксидов также зависят от степени окисления Mn, с увеличением которой усиливаются кислотные свойства соединений:

MnO → Mn 2 O 3 → MnO 2 → Mn 2 O 7

основные амфотерный кислотный

Mn(OH) 2 → Mn(OH) 3 → Mn(OH) 4 → HMnO 4

основные амфотерный кислотный

Т.о. оксиды и гидроксиды марганца подчиняются общим закономерностям изменения кислотно-основных и окислительно-восстановительных свойств.

Задача 5. Из оксидов As 2 O 3 , P 2 O 5 , GeO 2 , SO 3 , Al 2 O 3 , V 2 O 5 выберите два оксида с наиболее выраженными кислотными свойствами. Укажите валентные электроны выбранных элементов.

Решение. , так как растет атомное притяжение. Энергия ионизации увеличивается. Так как элементы с левой стороны таблицы стремятся потерять электрон, чтобы походить на ближайший благородный газ (приобрести устойчивую структуру), поэтому для отрыва электрона не требуется много энергии. Элементы с правой стороны таблицы стремятся приобрести электрон. Следовательно, для отрыва электрона требуется больше энергии.

Электроотрицательность и металичность в главных подгруппах слева направо растет (благородные газы не имеют электроотрицательности).

В связи с этим, кислотные свойства оксидов увеличиваются в главных подгруппах снизу вверх, в периоде – слева направо. Увеличение степени окисления элемента и уменьшение радиуса его иона делают оксид более кислотным.

Из приведенных оксидов As 2 O 3 , P 2 O 5 , GeO 2 , SO 3 , Al 2 O 3 , V 2 O 5 наиболее выражены кислотные свойства у P 2 O 5 и SO 3. следующее:

P+15 1s 2 2s 2 2p 6 3s 2 3p 3 3d 0 валентность 3

P * +15 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 валентность 5

S+16 1s 2 2s 2 2p 6 3s 2 3p 4 3d 0 валентность 2

S*+16 1s 2 2s 2 2p 6 3s 2 3p 3 3d 1 валентность 4

S*+16 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 валентность 6

Задача 6. Из оксидов BaO, K 2 O, TiO 2 , CaO, Al 2 O 3 , MgO, ZnO выберите два оксида с наиболее выраженными основными свойствами. Укажите валентные электроны выбранных элементов.

Решение. Элементы, атомы которых на внешнем энергетическом уровне содержат 3 и менее электронов (металлы) имеют оксиды, которые обладают основными свойствами .

Слева направо атомные радиусы элементов уменьшаются , так как растет атомное притяжение. Энергия ионизации увеличивается. Так как элементы с левой стороны таблицы стремятся потерять электрон, чтобы походить на ближайший благородный газ (приобрести устойчивую структуру), поэтому для отрыва электрона не требуется много энергии. Элементы с правой стороны таблицы стремятся приобрести электрон. Следовательно, для отрыва электрона требуется больше энергии. Электроотрицательность и металичность в главных подгруппах слева направо растет (благородные газы не имеют электроотрицательности).

В связи с этим, основные свойства оксидов увеличиваются в главных подгруппах сверху вниз , в периоде – справа налево. Увеличение степени окисления элемента и уменьшение радиуса его иона делают оксид более кислотным.

Из приведенных оксидов BaO, K 2 O, TiO 2 , CaO, Al 2 O 3 , MgO, ZnO наиболее выражены основные свойства у, K 2 O и BaO. следующее:

K+19 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 0

Ba+56 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2

Задача 7. Приведите современную формулировку периодического закона. Объясните, почему в периодической системе элементов аргон, помещены соответственно перед калием, хотя имеют бóльшую атомную массу. Как называются пары таких элементов?

Решение. : Свойства элементов и их соединений находятся в периодической зависимости от заряда ядра атома, или порядкового номера элемента.

При увеличении порядкового номера (заряда ядра) в атомах элементов последовательно увеличивается общее число электронов, а число электронов на внешнем электронном слое изменяется периодически, что приводит к периодическому изменению свойств химических элементов.

Положение элементов в Периодической таблице не зависит от атомной массы элемента, а зависит от заряда ядра, поэтому Ar+18 помещен перед K+19, Co+27 – перед Ni +28, Te+52 – перед I+53, Th+90 – перед Pa+91 (хотя аргон, кобальт, теллур и торий имеют большую массу, чем калий, никель, йод и протактиний соответственно).

Пары элементов с различным числом протонов и нейтронов, но с одинаковым числом нуклонов называют изобарами, например

Категории ,