Освоение солнечной системы. Возможно ли освоение солнечной системы и использование других планет

Наша прекрасная планета – лишь крошечная крупинка на лоне бесконечной Вселенной. Солнечная система, частью которой является Земля, также подобна небольшому винтику в грандиозном и непостижимом механизме. Но изучение даже такой крошечной в рамках Космоса единицы способно дать ответы на многие вопросы, связанные с происхождением мира, жизни и загадочным будущим, которое ждет вереницу планет и звезд спустя миллионы лет.

Происхождение Солнечной системы

Солнечная система из галактики Млечный Путь насчитывает восемь планет. Плутон до недавнего времени тоже считался таким же объектом, но был переквалифицирован в карликовую планету. Однако ученые из Калифорнийского технологического института говорят и о существовании девятого небесного тела, расположенного, вероятно, за пределами орбиты Плутона.

«Сердцем» нашей планетарной системы является , с момента зарождения которого и начался отсчет ее формирования. Из газопылевого облака благодаря гравитационному коллапсу, сверхбыстрому сжатию, образовалась главная в жизни людей звезда. Материя, не ставшая частью светила, начала вращение вокруг желтого карлика, образуя протопланетарный диск. Из него позже и развились планеты Солнечной системы, их спутники и другие объекты.

Восемь небесных тел, их сателлиты, пояса астероидов и кольца из космической пыли складываются в удивительный и выверенный механизм. Ближайшие к Солнцу объекты, одним из которых является Земля, называют планетами земной группы. Более отдаленные от звезды образуют класс ледяных гигантов. Если небесные тела первого типа в основном состоят из металлов и минералов-силикатов, то удаленные от Солнца исполины являют собой скопления газов.

Планеты Солнечной системы по порядку удаления от звезды изображены на фото ниже. Газовые гиганты по размерам значительно превышают планеты земной группы.

Ближе всех расположен к Солнцу и находится на расстоянии почти 58 млн. км от звезды. Полный оборот вокруг Солнца он делает за 88 суток, двигаясь со скоростью 48 км/с. Температура на поверхности колеблется от -190 до +430 градусов по Цельсию. Вероятно, полюса Меркурия укутаны шапками льда.

Эллиптическая орбита вращения постоянно изменяет расстояние между Меркурием и Землей. Самую маленькую планету Солнечной системы с массой 0,055 от земной и наш дом в разное время разделяют от 82 до 217 млн. км. Но о том, сколько лететь до Меркурия, уже известно на практике. «Маринер-10» — самый первый космический аппарат, достигнувший раскаленной планеты в 1974 году. Ему удалось преодолеть непростой путь за 147 суток.

Близость к светилу обуславливает не только высокий температурный режим на поверхности планеты, но и особенности ее строения. Основной объем небесного тела, около 83%, занимает его ядро из железа. Вероятно, подобные особенности связаны с тем, что из-за солнечной активности верхние пласты планеты были буквально разрушены и сорваны. При этом сила тяжести на Меркурии равна 3,7 м/с 2 (0,378 от земной).

Колонизация Меркурия человеком – не такая уж и фантастика. Планета обладает крайне разряженной атмосферой и могла бы значительно страдать от солнечной радиации. Но мощное магнитное поле, генерируемое огромным ядром, сдерживает часть солнечного ветра и космического излучения. Близость к звезде предполагает рациональное использование солнечной энергии. Создание солнечных электростанций могло бы решить проблему низких температур и помочь освоить полюса, наиболее пригодные для жизни. Но длительность дня на Меркурии, которая составляет почти 59 дней, крайне пагубно скажется на здоровье потенциальных колонистов.

Венера подобна сестре Земли. Планета обладает собственной атмосферой, на 96% состоящей из углекислого газа, и похожей на земную массой – 0,815. Сила тяжести здесь равна 8,87 м/с 2 , что составляет 0,91 от силы земного притяжения. Венера геологически активна, есть предположения, что часть ее атмосферы наполняется благодаря выбросам вулканов.

Полный круг вокруг звезды планета, названная в честь богини любви, делает почти за 225 суток, двигаясь при этом в противоположную для большинства тел Солнечной системы сторону. Венера вращается вокруг своей оси со скоростью всего лишь 6,5 км в час. Это значит, что венерианский день равен почти 117 земным суткам.

Расстояние от Венеры до Солнца составляет 108,2 млн. км, а до Земли – от 38 до 261 млн. км. Первым кораблем, успешно долетевшим до орбиты Венеры, был «Маринер-2». В 1962 году аппарат приблизился к планете, потратив на полет 153 дня.

Обилие углекислого газа в атмосфере и плотные облака из серной кислоты постоянно продуцируют создание парникового эффекта. При этом давление на Венере превышает земное в 92 раза. На Земле схожее давление можно ощутить под водой на глубине 900 м. Относительная близость к светилу и особенности атмосферы превращают планету в самую горячую во всей системе. Средняя температура поверхности Венеры составляет около 462 градусов.

Колонизация Венеры возможна после тщательного терраформирования. Для изменения климатических условий на планете необходима установка специальных экранов, которые защитят ее от солнечной активности и помогут снизить температуру. На Венере практически отсутствует вода. Чтобы исправить это, планету необходимо бомбардировать ледяными астероидами или научиться синтезировать ее на месте другим способом.

Но все эти мероприятия по созданию более комфортных климатических условий могут обернуться другой проблемой. Изменение атмосферы может усилить влияние солнечной радиации.

Голубая планета является третьей по удаленности от Солнца. Землю и единственную звезду системы разделяют 149,6 млн. км. Ракета сможет преодолеть это расстояние примерно за 7-8 месяцев.

Масса Земли является внесистемным показателем, с которым сравнивают массы других планет Солнечной системы. Эта цифра внушительна и составляет 5,9726*10 24 кг. Более простыми словами – это 5,97 секстиллионов тонн. Сила тяжести в таких условиях равна 9,8 м/с 2 .

Наша планета уникальна тем, что на ней есть жизнь. Скорее всего, она зародилась примерно 4,25 млн. лет назад, практически сразу после формирования тела. Развитию и эволюции существ способствовали идеальные условия:

  • состав атмосферы и ее способность нивелировать негативное воздействие солнечной и космической радиации;
  • комфортный диапазон температуры воздуха;
  • наличие воды;
  • давление на поверхности, которое зависит от многочисленных факторов, и пр.

Полный оборот вокруг Солнца Земля совершает за 365 дней. Благодаря этому и наклону оси около 23 градусов на большей части поверхности мы можем наблюдать смену времен года. Точное время суток на Земле равно 23 ч 56 минут и 4 секунды. Для упрощения эта величина округлена до 24 ч.

Масса Марса составляет всего 0,107 от массы Земли, что почти в 2 раза больше массы Меркурия, но ощутимо меньше массы Венеры. Сила тяжести — 3,71 м/с 2 (0,38 от земной). Красноватый оттенок поверхности планета приобрела благодаря обилию оксида железа – минерала маггемита. Расстояние между Марсом и Землей колеблется от 55 до 401 млн. км. Космические корабли, когда-либо отправлявшиеся к Марсу, долетали до него за 128-323 дня.

Сутки на Марсе почти равны земным и составляют чуть больше 24 ч 37 мин. Для удобства марсианские сутки вывели в отдельную единицу и назвали солом. Полный оборот вокруг «сердца» Солнечной системы красная планета совершает чуть более, чем за 668 сола или 687 земных суток.

Вращение Марса сопровождают два спутника – Фобос и Деймос. Тела имеют неправильную форму и, по предположениям ученых, являются захваченными гравитационным полем планеты астероидами.

Как и на Земле, на Марсе существует смена времен года. Лето на севере планеты долгое и прохладное, на юге же теплый период гораздо короче и теплее. Летом на экваторе температура достигает примерно 20-30 градусов, тогда как на полюсах опускается до минус 150. В разряженной атмосфере преобладает углекислый газ (95%), давление уступает земному в 160 раз. Но даже в таких условиях колонизация возможна.

Марс более привлекателен, чем горячая Венера. На этой планете сутки практически равны земным, разница наклона оси составляет примерно 2 градуса. Наличие атмосферы частично нивелирует действие , но не является достаточным в силу практически отсутствующего магнитного поля. Наличие воды в виде залежей льда гораздо упростит терраформирование. Однако из-за низкого давления (всего 1% от земного) жидкость на Марсе из твердого состояния практически сразу переходит в газообразное.

Юпитер

По массе Юпитер превышает Землю в 318 раз, а все остальные планеты Солнечной системы – в 2,5 раза. Эта воистину огромная планета впечатляет своими характеристиками. Сила тяжести Юпитера составляет 24,79 м/с 2: скорость свободного падения здесь выше в 2,53 раза, чем на Земле. Газовый гигант окружен минимум 79 спутниками, часть которых могла бы быть пригодна для колонизации. Однако расстояние между Землей и самой крупной планетой, колеблющееся от 588 млн. км до 778,5 млн. км, значительно усложняет изучение и освоение объектов. Современные летательные аппараты могут достигнуть орбиты гиганта примерно за 6 лет.

Полный оборот вокруг Солнца удаленная на 778,5 млн. км от него планета делает за 11,86 лет. А вот сутки на Юпитере составляют всего 9 ч 56 мин. В его атмосфере преобладают водород и гелий, а ветра, рождающиеся в ней, могут достигать 600 км/ч. Движение воздушных масс, в сердце которых образуются мощнейшие молнии, просто завораживает. Планета излучает внутреннее тепло, которое может свидетельствовать о термоядерных реакциях. Температура газа на Юпитере зависит от удаленности от его ядра. В верхних слоях облаков она может остановиться на отметке -145, постепенно повышаясь и до положительных значений в 20 градусов.

Юпитер

Знаменитая система колец из пыли и льда делает Сатурн узнаваемым. В составе планеты преобладает водород, есть примеси гелия, воды, аммиака и метана. Ядро объекта включает в себя соединения железа, никеля и обилие льда. Это наименее плотное небесное тело во всей Солнечной системе: его средняя плотность меньше, чем у воды. Сила тяжести составляет 10,44 м/с 2 и превышает земную на 7%.

Ветры на Сатурне значительно превосходят скорость юпитерианских воздушных масс. Здесь потоки движутся со скоростью около 1800 км/ч. Год на планете длится около 29 лет, тогда как сутки – 10 ч 42 мин.

Среднее расстояние между Солнцем и Сатурном составляет 1,43 млрд. км, а между Землей и газовым исполином — 1,28 млрд. км. Современными космическими аппаратами этот колоссальный отрезок было преодолен за разное время: от 2 лет и 4 месяцев до 6 лет и 9 месяцев. Длительность полета связана не только с мощностью двигателей, но и с использованием силы гравитации других планет для ускорения корабля.

Как и в случае с Юпитером, колонизация вероятна лишь на планетах-спутниках, которых у Сатурна 62. Наиболее интересными являются и Энцелад, на которых зафиксирована геологическая активность льдов.

Между Ураном и Землей протянулись минимум 2,57 млрд. км. При максимальном удалении друг от друга планеты разделяет уже 3,15 млрд км. Один из кораблей НАСА в 1986 году сумел добраться до газового гиганта спустя 9 лет после взлета. От Солнца же планету отделяет 2,8 млрд. км, полный оборот вокруг которого Уран делает за 84 года. Сутки здесь длятся чуть больше 17 часов, а угол наклона при вращении вокруг оси равен 98 градусам.

Своей массой далекая планета превышает Землю в 14 раз, но остается самой легкой среди газовых гигантов. Сила тяжести аналогична венерианской — 8,87 м/с 2 (0,91 от земной). Уран является и самой холодной планетой с минимальной температурой в -224 градуса Цельсия. Атмосфера схожа с юпитерианской, в которой преобладают водород и гелий. Но ядро Урана содержит огромное количество льда. Эта планета практически не излучает собственное тепло.

Миранда и Титания – два крупных спутника Урана из известных 27. Именно их сумел запечатлеть аппарат «Вояжер-2» в 1986 году. Эти тела интересны скорее в качестве объектов исследования, чем как будущие поселения. Слишком суровые условия делают колонизацию спутников Урана нерациональной.

Миранда — спутник Урана

Нептун

Восьмая планета Солнечной системы удалена от главной звезды практически на 4,5 млрд. км. Расстояние между Нептуном и Землей постоянно изменяется в зависимости от положения планет на своих эллиптических орбитах и находится в пределах от 4,3 до 4,55 млрд. км. Достичь орбиты Нептуна удалось «Вояджеру-2» спустя долгих 12 лет.

Нептун плотнее Урана и излучает немного больше тепла, чем его газовый сосед. Сила тяжести на этом ледяном гиганте равна 11,15 м/с 2 и ощутимее земной на 13,8%. Год на этой планете – самый продолжительный: для того, чтобы сделать полный оборот вокруг Солнца, Нептуну требуется 165 лет. Зато сутки составляют всего 16 ч 6 мин.

Верхние слои атмосферы состоят из водорода и гелия (80 и 19% соответственно). Здесь же температура достигает -220 градусов. Небольшие следы метана обнаружены и на этом великане из газа.

Среди 14 известных спутников для колонизации интересен самый крупный – Тритон. Он геологически активен, а его поверхность покрыта льдом из азота. Ядро из металла и камня покрыто прочной коркой из водяного льда и ледяной мантией. Считается, что под таким пластом могут находится целые океаны. Как и Энцеладу, Тритону присущ криовулканизм: на снимках «Вояджера-2» отчетливо видны следы извержений ледяной лавы.

Происхождение Солнечной системы, ее планет и других элементов полностью отображает процессы, происходящие в более крупных структурных единицах Вселенной – галактиках и их скоплениях. Колонизация планет и их спутников вполне возможна при развитии научно-технического прогресса на Земле и немалых физических и материальных затратах. Возможно, новые открытия позволят следующим поколениям полностью перекроить ландшафт и климат Венеры или Марса, создав новое и безопасное для жизни всего человечества место.

Вконтакте

Экология познания.В научно-фантастических фильмах и книгах колонизация других планет кажется простой. Все, что вам нужно, это

В научно-фантастических фильмах и книгах колонизация других планет кажется простой. Все, что вам нужно, это совершить прыжок в «гиперпространство» на вашем звездном крейсере, и - вуаля - вы пробиваете сложенное пространство-время и мгновенно прибываете в пункт назначения. На самом деле, мы будем колонизировать космос не крупными прыжками, а серией небольших шагов, начиная с успешного проживания на низкой околоземной орбите.

Сегодня это трудно представить, но в первые дни после запуска «Спутника» ученые даже не подозревали, что люди смогут выживать в течение длительных периодов времени в космосе. Первые полеты в космос осуществлялись силами животных, а не астронавтов, и только в 1961 году Юрий Гагарин взмыл на пылающей ракете в космос. Исторический полет Гагарина длился всего 108 минут, но заложил основу для более длительных миссий.

К середине 1970-х годов астронавты успешно осели в орбитальных космических станциях. Первыми стали «Салют» и «Скайлэб», затем появилась «Мир». На станции «Мир» космонавты продолжали бить рекорды проживания в космосе. Муса Манаров и Владимир Титов провели год на борту советской станции в конце 80-х годов, а в 1995 году Валерий Поляков преодолел их рекорд, завершив 438-дневное дежурство в космосе.

Сегодня Международная космическая станция (МКС) выступает в качестве четкого свидетельства того, что люди могут бесконечно долго жить на низкой околоземной орбите. С тех пор, как первый экипаж МКС прибыл на станцию в 2000 году, МКС стала постоянным плацдармом для проведения экспериментов, наблюдения за космосом и в целом жизни космонавтов и астронавтов в космосе.

От низкой околоземной орбите нам просто нужно сделать прыжок и достичь Луны (условно говоря). Она должна стать нашим следующим пунктом назначения. Должна, но может и не стать.

Освоение Луны

С тех пор как программа «Аполлон» поместила Луну в пределах нашей досягаемости, создание базы на Луне казалось следующим логическим шагом. Естественный спутник Земли имеет ряд преимуществ по сравнению с более экзотическими лунами вроде Титана, спутника Сатурна. Во-первых, он находится относительно близко, а значит, экипажи могут сменяться в течение нескольких дней. Также это подразумевает хорошую связь между колонистами и командирами миссии на Земле, то есть без существенных задержек. Луна могла бы стать идеальным космопортом, потому что ракеты могли бы покидать ее низкую гравитацию без особых затрат энергии. Наконец, лунная обсерватория существенно облегчила бы изучение Вселенной и поиск мест, куда можно было бы отправиться в дальнейшем.

Правда, жизнь на Луне будет непростой. В отсутствие атмосферы можно добавить существенные перепады температур, от 134 градусов по Цельсию в полдень до минус 170 градусов по Цельсию в ночь. Поверхность Луны постоянно шлифуется микрометеоритами и космическими лучами. Чтобы пережить это, колонистам придется обустраивать свои жилища под лунной почвой или в лунных кратерах.

Также возникает вопрос касательно еды и воды. Ученые знают, что на Луне имеется довольно много воды, но нужны специальные устройства, чтобы ее извлечь. И выращивание растений в течение длинных лунных ночей, не имея насекомых для опыления, будет весьма сложным.

Несмотря на эти трудности, некоторые страны разрабатывают возможности освоения Луны. Не так давно стало известно о планах России по созданию лунной базы. Также в 2010 году была приостановлена американская программа Constellation, в рамках которой на Луну должны были отправиться космические аппараты нового поколения. В любом случае можно констатировать, что внимание общественности сейчас обращено по большей части на Марс.

Колонизация Марса


Некоторые ученые считают, что нам нужно пропустить Луну и отправиться прямо на Марс. Одним из самых горячих сторонников этой стратегии является Роберт Субрин, основатель и президент Mars Society. В 1996 году он изложил подробности миссии Mars Direct, которую можно назвать образцовым планом для пилотируемых поездок на Красную планету.

Вот как это будет выглядеть. Первый запуск будет включать беспилотный Earth Return Vehicle, или ERV, который отправится на Марс. ERV должен быть оснащен ядерным реактором, с помощью которого можно будет изготовить топливо, используя элементы марсианской атмосферы. Двумя годами спустя будет запущен второй беспилотный ERV, который отправится в новое место для посадки. В то же время будет отправлен пилотируемый космический корабль, который должен будет приземлиться рядом с первым ERV. Экипаж будет находиться на Марсе в течение 18 месяцев, исследуя планету и проводя эксперименты, пока не наступит время возвращаться на Землю, используя топливо, добытое прямо на Марсе. После того как первая команда отправится на Землю, прибудет вторая группа исследователей, и весь процесс повторится.

Долгосрочное проживание в марсианских колониях, однако, потребует преобразования планеты, так называемого терраформирования. Терраформирование включает подъем температуры на Марсе до земных условий. Единственный реалистичный способ сделать это - построить блоки обработки почвы, которые будут накачивать сверхпарниковые газы вроде метана и аммиака в атмосферу Марса. Эти газы будут абсорбировать солнечную энергию и согревать планету, запуская выброс диоксида углерода из почвы и полярных ледяных шапок. По мере того как диоксид углерода будет увеличиваться в атмосфере, давление будет падать, обеспечивая дополнительное тепло и образование океанов. В конце концов колонисты начнут обходиться без скафандров, хотя будут вынуждены носить кислородные баллоны.

После нескольких десятилетий терраформирования, Красная планета будет выглядеть практически так же, как и наша родная. Спустя еще несколько десятилетий она будет практически неотличима от Земли. Если это произойдет, Марс может стать вторым домом для людей.

Колонии за пределами Марса


Астероиды - эти скалистые объекты, которые вращаются вокруг Солнца в широком диапазоне между Марсом и Юпитером - могли бы стать ступенью к внешним планетам. Существует только около сотни астероидов шириной более 200 километров, но общее число их превышает миллиарды, а это хороший ресурс для использования в Солнечной системе. Среди самых больших астероидов царит Церера (или карликовая планета, с какой стороны посмотреть), и после ее тщательного исследования она вполне может стать вариантом для форпоста. С одной стороны, сам факт существования жидкой воды под ее поверхностью может быть определяющим.

Как люди могут колонизировать астероид? Один из вариантов - превратить его в город. Это потребует существенных усилий по «выдалбливанию» внутренностей этого камешка. Другой вариант - построить «город в небе», космическую станцию, которая будет вращаться вокруг астероида. Такая идея витает в воздухе уже много лет.

В 1975 году группа профессоров, технических директоров и студентов собралась на 10 недель в Стэнфордском университете и Научно-исследовательском центре Эймса, чтобы разработать проект космических поселений. Они предложили создать колесоподобное жилище диаметром 1,6 километра. Колонисты жили бы в трубе по периметру колеса, который соединялся бы с помощью шести «спиц» с центральным доком. Вся структура вращалась бы, имитируя гравитацию Земли, и с помощью зеркал собирала бы солнечный свет для использования в производстве электроэнергии и сельском хозяйстве.

В любом случае сейчас активно прорабатываются варианты с освоением Марса. Правда, не все они выглядят одинаково привлекательными. А вы готовы возглавить путешествие за пределы Солнечной системы?

Курс на планету в другой системе


Если мы собираемся колонизировать планету в другой звездной системе, нам нужно ответить на два вопроса. Во-первых, существует ли подходящая планета для нашего вида за пределами Солнечной системы? Ответ: конечно, да. Телескоп Кеплер уже нашел сотни планет, которые могут нам подойти.

Второй вопрос чисто логистический: как добраться до планеты, расположенной за триллионы километров от нас? Чтобы ответить на этот вопрос, нам нужно переосмыслить космические путешествия. Возможно, провести несколько революций в сфере освоения космоса. К примеру, мысль о том, что один экипаж долетит до далекой планеты, весьма сомнительна. Скорее понадобится «корабль поколений», на котором успеет родиться и умереть несколько поколений людей.

Возможно, мы найдем червоточину или освоим двигатель на эффекте Казимира. Есть и более реалистичные варианты вроде солнечного паруса. Ионные двигатели используют солнечные батареи для выработки электрического поля, которое ускоряет заряженные атомы ксенона. Такой двигатель в настоящее время питает миссию зонда Dawn, исследующего Цереру. Ракеты на антивеществе могут быть чрезвычайно эффективны и достигать высоких скоростей, но эта технология пока скорее гипотетическая.

В конце концов, хорошим решением может быть сочетание всех этих технологий. И это в очередной раз доказывает, что освоение глубокого космоса потребует сотрудничества и взаимодействия между учеными разных стран и направленностей. Как ни крути, космос объединяет.опубликовано

Главный процесс, совершающийся в ноосфере,- неуклонное, все ускоряющееся накопление информации. Именно информация уже сегодня осознается человечеством как самое большое богатство, ему принадлежащее, как основной, непрерывно наращиваемый его капитал. Количество информации характеризует степень разнообразия данного объекта, уровень его организации. Разумно воздействуя на окружающую его природу, человек создает вторую, искусственную «природу», отличающуюся большей упорядоченностью, а стало быть, и большим количеством информации, чем естественная среда. Накопление такой производственной информации в ноосфере есть результат производственной деятельности человека, результат взаимодействия природы и общества.

Но общество способно накапливать информацию не только в средствах и продуктах труда, но и в системе научного знания. Познавая мир, человек обогащает себя и ноосферу научной информацией. Значит, источником накопления информации в ноосфере служит преобразовательная и познавательная активность человека. «Основной процесс накопления информации в ноосфере,- говорит А. Д. Урсул, - связан с ассимиляцией разнообразия за счет внешней, окружающей общество природы, в результате чего объем и масса ноосферы могут возрастать неограниченно».

Расширение ноосферы в космос в настоящее время выражается и в получении научной информации о космосе с помощью космонавтов и автоматов. Нет, однако, сомнений, что со временем возникнет и космическое производство, т. е. практическое освоение небесных тел, переделка ближнего, а может быть, и дальнего космоса по воле человека. Тогда из космоса будет поступать и производственная информация, первые зачатки которой в принципе уже существуют (например, разведка лунных недр, изучение лунного грунта). Ближний космос со временем станет местом обитания и трудовой деятельности человека. Ноосфера охватит сначала ближайшие к Земле небесные тела, а затем, быть может, и всю Солнечную систему. Как это произойдет? Каковы ближние и дальние перспективы освоения космоса?

Уже сегодня около Земли обращаются тысячи спутников. На околоземных орбитах начали действовать долговременные орбитальные станции со сменным персоналом. В будущем некоторые из них, вероятно, возьмут на себя функции заправочных станций для межпланетных пилотируемых ракет. Станет возможной и сборка космических кораблей на околоземных орбитах из блоков, предварительно доставленных в район «строительства». Семейство спутников разных типов и назначений обеспечит человечество постоянной научной информацией о событиях в космосе и на Земле.

Уже три небесных тела (Луна, Венера и Марс) временно обзавелись на наших глазах своими искусственными спутниками. Создание таких спутников, по-видимому, неизбежный этап в освоении планет (наряду с предварительной посылкой зондов в окрестности изучаемого небесного тела и на его поверхность). Есть все основания думать, что эта последовательность сохранится и в будущем, так что к концу века, возможно, за большинством планет станут следить зоркие глаза их искусственных спутников.

Луноходы и марсоходы (и вообще планетоходы) наряду с автоматическими неподвижными станциями, мягко севшими на поверхность изучаемых небесных тел, станут третьей очередью автоматов (после «пролетных» зондов с жесткой посадкой), изучающих соседние миры. Несомненно, что их совершенствование приведет к появлению таких космических автоматов, которые смогут выполнить почти любую задачу в космосе, в частности, взлет с планет и возвращение на Землю (как, например, было на Луне). На таком пути нет принципиально неразрешимых трудностей, но есть огромные технические проблемы, главная из которых, пожалуй, заключается в создании компактных, легких и в то же время эффективных тяговых систем.

Преимущества космических автоматов очевидны. Они не столь чувствительны к суровой космической среде, как человек, и их использование не грозит человеческими жертвами. Межпланетные автоматические станции гораздо легче пилотируемых космических кораблей, а это дает экономические выгоды при запуске. Хотя есть и другие преимущества автоматов перед человеком, все же освоение Солнечной системы осуществится, разумеется, не только автоматами, но и людьми. И здесь можно найти немало аналогий из земного опыта.

Разведка Антарктиды началась с плаваний около ее берегов. За ними последовали кратковременные высадки на берег и экспедиции внутрь материка вплоть до Южного полюса. Наконец, на наших глазах в Антарктиде обосновались постоянные научные станции (со сменным персоналом). Возможно, что со временем начнется планомерное заселение Антарктиды, сопровождающееся изменением ее природы в сторону, благоприятную для человека.

Луна намного суровее Антарктиды. Но хотя ее отделяют от Земли более трети миллиона километров, она начала осваиваться гораздо более быстрыми темпами, чем самый южный земной материк. Сначала (с 1959 г.) космические зонды пролетали вблизи Луны. Затем вокруг Луны появились первые искусственные спутники. За ними последовали жесткие прилунения. Наконец, космические автоматы мягко опустились на лунную поверхность, предварив этой разведкой соседнего мира первые лунные экспедиции. Что будет дальше, предусмотреть нетрудно. После серии новых экспедиций луноходов и космонавтов, которые соберут достаточно обстоятельную информацию о соседнем мире, на Луне, вероятно, возникнут сначала временные, затем постоянные научные станции. Следующий же шаг в освоении Луны выразится, вероятно, в ее постепенном заселении, в создании на ее поверхности постоянных энергетических установок, в развитии лунной индустрии, в широком использовании местных ресурсов вещества и энергии.

Есть два пути приспособления человека к враждебным ему условиям космической среды. В кабинах космических кораблей системы жизнеобеспечения создают миниатюрный «филиал Земли», земной комфорт. В микромасштабе ту же функцию выполняют скафандры. На первых стадиях освоения Луны и других небесных тел эта методика и впредь останется единственно возможной. Но, «закрепившись на Луне, построив первые лунные жилища, по характеру системы жизнеобеспечения напоминающие кабины космических кораблей, человечество, возможно, приступит к реорганизации самой Луны, к искусственному созданию на ней в глобальном масштабе обстановки, пригодной для обитания. Иначе говоря, не пассивное приспособление к внешней враждебной космической среде, а ее изменение в сторону, благоприятную человеку, активная переделка внешней среды в «земноподобном» духе - вот второй путь, обеспечивающий возможность расселения человечества в космосе.

Конечно, второй путь труднее первого. В некоторых случаях он неосуществим или, выразимся осторожнее, кажется неосуществимым в рамках известной нам техники. Например, создание вокруг Луны постоянной атмосферы за счет газов, полученных искусственно из лунных пород, представляется проектом нереальным, фантастическим, главным образом из-за слабости лунной гравитации. Тяжесть на лунной поверхности в 6 раз меньше земной и искусственная лунная атмосфера должна быстро улетучиться. Но тот же проект для Марса принципиально вполне осуществим и можно думать, что когда-нибудь усилия человечества превратят Марс во вторую маленькую Землю.

Из всех планет Солнечной системы Марс, вероятно, первым подвергнется «колонизации». Как ни суров его луноподобный облик, неожиданно для астрономов раскрытый средствами космонавтики, все же по совокупности признаков Марс наиболее близок к Земле. Пилотируемые полеты к Марсу и высадка первой экспедиции на Марсе проектируются до 2000 г. Однако уже сейчас Марс обзавелся искусственными спутниками и на его поверхность мягко опустились советские автоматические станции. Это случилось всего несколько лет спустя после достижения аналогичного этапа в изучении Луны, несмотря на то, что даже при наибольшем сближении с Землей Марс почти в 150 раз дальше Луны,- факт многозначительный, снова иллюстрирующий необычайно бурный прогресс космонавтики.

Если бы мы располагали двигателем, который на протяжении всего полета к Марсу давал бы космическому кораблю ускорение 9,8 м/с 2 , то до Марса можно было бы добраться всего за неделю. Сейчас не видно даже подхода к техническому решению такой задачи, но можно ли утверждать, что в будущем средства межпланетных сообщений останутся такими же, как и сегодня? Впрочем, если речь идет о Марсе, то и при современном уровне техники его освоение вполне возможно. Вероятно, заселению Марса будут предшествовать те же стадии, что и заселению Луны. Но этот далекий мир мы знаем гораздо хуже соседнего небесного тела и нас на Марсе наверняка ждут неожиданности. По этой причине (а также из-за удаленности Марса) его разведка, вероятно, растянется на большие сроки, чем разведка Луны.

Последние данные о Венере не располагают нас ни к ее посещению, ни тем более к ее заселению. Давление 10 МПа при температуре 500 °С - вот что характерно для поверхности Венеры. Прибавьте к этому постоянную плотную пелену облаков, создающую на поверхности планеты даже в полдень полумрак, ветры в удушающей атмосфере из углекислого газа, вероятно, полное отсутствие воды и, наконец, возможно, мощнейшие вулканические извержения - такова обстановка на Венере, по сравнению с которой фантастические картины ада иллюстрируют бедность человеческого воображения. Конечно, исследования Венеры будут продолжаться, в частности зондирование ее поверхности. Но об экспедиции на Венеру, по крайней мере в обозримом будущем, не может быть и речи.

Крайние планеты Солнечной системы - Меркурий и Плутон - наглядно демонстрируют собой крайность в физической обстановке на планетах. На дневной стороне Меркурия температура в полдень может подниматься до 510 °С. Температура на плохо изученном Плутоне, по-видимому, всегда близка к абсолютному нулю. Обе планеты значительно уступают в размерах Земле. Для наблюдателя, находящегося на Меркурии, Солнце выглядит по диаметру в 2,5 раза больше, чем с Земли. На небе Плутона Солнце - лишь ярчайшая звезда, правда, в 50 раз сильнее освещающая Плутон, чем Луна Землю в полнолуние. Обе планеты, несомненно, подвергнутся изучению с помощью автоматов в сравнительно недалеком будущем. Они окажутся удобными объектами для функционирования на их поверхности долговременных автоматических научных станций. Что же касается экспедиций на Меркурий и Плутон, если они и состоятся, то скорее всего лишь в отдаленном будущем: слишком непривычна и враждебна для земных существ обстановка на этих планетах и вряд ли когда-нибудь они будут заселены человеком.

Еще более непригодны для этой цели (а лучше сказать, совсем непригодны) планеты-гиганты Юпитер, Сатурн, Уран и Нептун. В основном они состоят из водорода (в свободном состоянии и в соединениях с азотом и углеродом). Возможно, что у них вовсе нет твердых поверхностей в земном понимании этого слова, т. е. они целиком газообразны, хотя в недрах планет-гигантов плотности газов могут быть очень большими. Эти тела по своей физической природе занимают промежуточное положение между звездами и планетами земного типа. До звезд они несколько «недотянули» по массе и потому в их недрах недостаточно жарко для возникновения протон-протонного цикла. От планет земного типа их отличает обилие легких элементов при крайне малой доле тяжелых. Атмосферы их, состоящие из водорода, метана и аммиака, обладают огромной толщиной, а большая масса планет-гигантов обусловливает колоссальное давление в глубине их атмосфер.

Зондирование планет-гигантов пролетными космическими автоматами уже началось (полеты аппаратов «Пионер-10» и «Пионер-11»). При некотором благоприятном расположении планет-гигантов возможно послать зонд, который в сравнительно короткий срок (около девяти лет) сможет облететь все планеты-гиганты, тогда как обычный полет к одному Нептуну занял бы около 30 лет. Секрет этого проекта, получившего наименование «межпланетного бильярда», заключается в том, что зонд разгоняется в окрестностях планет-гигантов их гравитационным полем. Каждая из планет выступает в роли ускорителя, что существенно уменьшает сроки долета. По такой методике американские автоматические станции уже обследовали Сатурн и Уран. Вполне, конечно, реально и отправление автоматических зондов в атмосферы этих планет, и создание вокруг них (как вокруг Венеры, Меркурия и Плутона) искусственных спутников. Вместо физически невозможного заселения планет-гигантов человечество, может быть, использует эти тела как практически неисчерпаемые резервы топлива для будущих термоядерных реакторов.

Главные из естественных спутников планет-гигантов по размерам сравнимы с Меркурием и даже с Марсом. Некоторые из них окружены атмосферой, состоящей из метана и углекислого газа. Они более сходны с Землей, чем их планеты, и не исключено, что освоение этих тел пойдет по тому же пути, что и освоение Луны и Марса. Организация научных станций и топливо-заправочных баз на спутниках Юпитера и Сатурна, быть может, станет необходимым при освоении окраин Солнечной системы. В принципе все спутники планет доступны не только автоматам, но и космонавтам.

Малые планеты (астероиды) и кометы, вероятно, не будут обойдены человечеством. На крупнейшие астероиды и спутники планет возможна посадка и людей, и автоматов. Меньшие же тела могут представлять интерес как источники топлива для космических ракет (ядра комет состоят из замерзших льдов воды, метана и аммиака) или как ресурсы полезных ископаемых (астероиды). Вполне возможно, что будущее поставит перед человечеством и такие задачи, о которых мы не имеем ни малейшего представления.

Освоение Солнечной системы - это не только полеты на планеты и их спутники, а также заселение некоторых из них людьми и автоматами. Предстоит также переделка нашей планеты Земли по вкусу и требованиям человечества. Не все нравится нам в нашей «космической колыбели». Пока человечество находилось в «младенческом» состоянии, с этим приходилось мириться. Но сейчас человечество настолько «повзрослело», что не только вышло из своей «колыбели», но и почувствовало в себе силы заняться коренной переделкой собственной планеты.

Нет недостатка в проектах искусственного изменения климата. Например, предлагается перегородить плотиной Берингов пролив и перекачивать атомными насосами теплую воду Тихого океана в Ледовитый океан. Есть немало проектов изменения направления Гольфстрима, в частности использование его для отепления североамериканского побережья. Есть проекты «оживления» Сахары и других пустынных районов Земли. Все эти проекты объединяет один недостаток - в них слабо учитываются последствия реализации каждого проекта, между тем как они могут оказаться катастрофическими (например, поворот Гольфстрима к побережью Северной Америки вызовет оледенение Европы). Теми же пороками страдают и проекты обширных водохранилищ, новых каналов и вообще всяких крупных искусственных изменений в физической природе Земли, в том числе искусственного уменьшения облачности или обильного дождевания.

Нет сомнений, что человек переделает Землю по-своему, но этой переделке должно предшествовать тщательное научно обоснованное прогнозирование последствий вмешательства человека в установившееся равновесие природных явлений. Не умея пока что переделать собственную планету, человечество тем не менее обсуждает радикальные проекты переделки всей Солнечной системы. Нашу самоуверенность можно, пожалуй, оправдать тем, что реализация этих проектов - дело далекого будущего, дело неимоверно трудное, к которому надо готовиться загодя.

В астрономии по традиции принято называть планеты небесными землями. Условность этого термина ныне очевидна: даже в нашей Солнечной системе, строго говоря, ни одна планета не похожа на Землю. Переделка Солнечной системы, очевидно, в качестве главной цели будет преследовать исправление этого «недостатка природы». Говоря яснее, человечество, вероятно, построит вокруг Солнца искусственные, годные для жизни сооружения, максимально использующие запасы вещества планет и животворящую энергию Солнца. Истоки этой идеи мы находим у К. Э. Циолковского в его проекте создания искусственных планет земного типа или гораздо меньших «космических оранжерей». С точки зрения (чисто количественной) запаса вещества в одних планетах-гигантах вполне хватило бы на изготовление нескольких сотен «искусственных земель» или нескольких сотен тысяч «космических оранжерей». В принципе можно было бы перевести все их на более близкие к Солнцу орбиты. Беда в том, что качественно планеты-гиганты для этой цели неподходящи: нельзя же строить «искусственные земли» из водорода или других газов (если, конечно, не предварить это строительство термоядерным синтезом тяжелых элементов).

Некоторые авторы (И. Б. Бестужев-Лада и независимо от него Ф. Дайсон) предложили окружить Солнце исполинской искусственной сферой, на внутренней стороне которой разместить весьма многочисленное к тому времени человечество. Такая сфера полностью улавливала бы излучение Солнца и эта энергия стала бы одной из основных энергетических баз бывших землян («бывших» потому, что на постройку такой сферы придется, быть может, израсходовать вещество всех планет, в том числе и Земли). Несколько лет назад было показано, что сфера Дайсона динамически неустойчива, а значит, и непригодна для обитания.

В некоторых проектах предлагается, не покидая нашу «колыбель» и «не стирая ее в порошок», наращивать Землю извне за счет вещества других планет. Очевидно, при таком наращивании все новых и новых этажей прогрессивно будет возрастать сила тяжести, что сильно затруднит не только строительство «новой Земли», но и обитание на ней чрезмерно «отяжелевших» людей. В проектах профессора Г. И. Покровского взамен сферы Дайсона предлагаются устойчивые твердые динамические конструкции, которые, быть может, будут созданы вокруг Солнца из вещества планет. Во всех этих проектах, кажущихся совершенно фантастическими, безусловно, верна основная идея: освоение Солнечной системы человечеством завершится лишь тогда, когда оно полностью и наиболее удобным для себя образом использует вещество и энергию этой системы. Тогда ноосфера займет, вероятно, все околосолнечное пространство.

Для современного этапа космонавтики характерно создание поколений орбитальных станций постепенно усложняющихся конструкций. Таковы советские станции «Салют» и «Мир». Американский ученый О"Нейл разработал проекты весьма крупных обитаемых космических конструкций цилиндрического типа. Предполагается, что в таких орбитальных станциях, где должна быть создана землеподобная обстановка, смогут обитать десятки тысяч землян. Разумеется, утопичным выглядит намерение О`Нейла постепенно переселить в его «цилиндры» большую часть населения Земли, но что подобные сверхкрупные орбитальные станции появятся на околоземных орбитах, в этом вряд ли может быть сомнение. Характерно, что на таких станциях из-за их вращения будет создаваться искусственная тяжесть. Период легкомысленного увлечения невесомостью давно прошел. Стало очевидным, что невесомость - серьезное препятствие к широкому освоению Солнечной системы. При длительной невесомости количество эритроцитов в крови уменьшается, соли кальция выходят из организма, что постепенно разрушает скелет, так что борьба с невесомостью только начинается.

Для переделки Солнечной системы нужны колоссальные затраты энергии. Сегодня ясно, что эту энергию дадут внеземные орбитальные солнечные энергоустановки. За пределами атмосферы они будут постоянно освещаться Солнцем и плохая погода не будет им мешать. Возможно, что солнечную энергию будет целесообразно сначала перевести в электромагнитную энергию (микроволновое излучение), которое затем с помощью рефлектора передавать на Землю. Инженерные проекты орбитальных солнечных энергостанций показывают, что уже завтра возможно создание на орбитах таких станций, которые по своей мощности не будут уступать крупнейшим земным гидроэлектростанциям. Об этом убедительно и увлекательно рассказывает Я. Голованов в книге «Архитектура невесомости», которую автор горячо рекомендует читателю.

Таким образом, уже сегодня человечество располагает средствами, необходимыми для освоения Солнечной системы. Известно, что это освоение - часть знаменитого плана К. Э. Циолковского по освоению космоса в целом. Насколько реальны планы К. Э. Циолковского в философском отношении, рассказано в книге известного советского философа академика А. Д. Урсула. На наших глазах по логике развития космонавтики возникает индустрия в космосе. Одна из ближайших ее задач - использование богатств планетных недр.

Использование планетных недр

Недра в эволюции жизни на Земле сыграли важную роль. Как уже говорилось, само возникновение жизни на нашей планете, по-видимому, вызвано извержением на поверхность содержимого земных недр (гипотезы Е. К. Мархинина и Л. М. Мухина). Когда в ходе эволюции цивилизация достигла достаточно высокого технического уровня, началось широкое использование земных недр. В наши дни для всех стало очевидным, что ресурсы Земли, увы, исчерпаемы и что, скажем, запаса топлива в земных недрах (при сохранении нынешних темпов роста добычи) хватит человечеству самое большое на 100-150 лет, а нефти - и того меньше. Правильно говорил К. Э. Циолковский, что только наше невежество заставляет нас пользоваться ископаемым топливом. Следовательно, человечеству предстоит в ближайшее столетие перейти с ископаемого топлива на другие виды энергии (например, солнечную). Обращаясь к телам Солнечной системы, мы прежде всего констатируем, что недра планет и их крупных спутников представляют собой богатейшие кладези полезных ископаемых. Промышленная разработка недр начнется, вероятно, с Луны. В различных проектах предполагается, что на Луне будут добываться прежде всего необходимые для строительства металлы: алюминий и титан, а также кремний. По проекту О"Нейла электромагнитные катапульты смогут с Луны перебрасывать добытые материалы в район строительства. По его расчетам, для отправки с Луны миллиона тонн сырья и материалов достаточно 150 человек. Предполагается, что в космосе будет построена специальная «ловушка», которая будет хватать лунные посылки, нужные для «эфирных поселений». Насколько серьезны эти проекты, свидетельствует то, что недавно проекты О"Нейла рассмотрены и одобрены специалистами НАСА, которые опубликовали официальный документ «Космическая цивилизация - проектное исследование», в котором признаны верными все расчеты О"Нейла. Не приходится сомневаться, что по примеру Луны со временем начнут разрабатываться и сырьевые ресурсы других планет. У планет земного типа богатства недр, вероятно, напоминают земные. У планет-гигантов главное богатство - обилие водорода, практически неисчерпаемого для термоядерных установок.

Среди астероидов могут найтись такие, которые содержат большие запасы железа или других металлов. Уже сегодня существуют проекты отбуксирования таких астероидов в окрестности Земли, где они подвергнутся тщательной разработке. Советский ученый А. Т. Улубеков обстоятельно исследовал вопрос о богатстве внеземных ресурсов. Эта работа показывает, что человечество, по словам К. Э. Циолковского, действительно может приобрести «бездну могущества» в ходе планомерного освоения Солнечной системы. Еще в 1905 г. К. Э. Циолковский в своей работе «Реактивный прибор как средство полета в пустоте и атмосфере» писал: «Работая над реактивными приборами, я имел мирные и высокие цели: завоевать Вселенную для блага человека, завоевать пространство и энергию, «испускаемую Солнцем». Но на пути к этому светлому будущему в наши дни встали темные силы зла, грозящие уничтожением всей жизни на нашей планете.



Солнечная система предоставила в наше распоряжение уникальные примеры сложившихся природных комплексов, отличных от нашей собственной планеты. Их изучение во всей взаимосвязи и в зависимости от определяющих факторов, выявление важнейших критериев и закономерностей формирования этих комплексов привело к становлению сравнительной планетологии, от успехов развития которой будет, в частности, зависеть лучшее понимание механизмов, лежащих в основе природы Земли и ее места как члена Солнечной системы.

Изучение множества природных процессов на примерах различных небесных тел обеспечивает необычайную широту подхода и одновременно дает возможность заглянуть в глубину. Новые экспериментальные данные и рождаемые ими идеи позволяют выйти за пределы ограниченного круга представлений, сложившихся вследствие приверженности к какой-то определенной точке зрения или модели.

Все это приводит к осознанию общности природы разнообразных явлений. Достаточно назвать обнаруженные закономерности элементного и минералогического состава вещества планет и метеоритов, общность характера тепловой эволюции, вулканической и тектонической активности и геологических структур на планетах земной группы, обнаружение глубокой связи между процессом формирования планет и их массы с формированием вращательного движения, ряд сходных черт циркуляции на Венере и океанической циркуляции на Земле: вершинную корреляцию периодов оледенения и климатической эволюции на Земле и Марсе и т. д. В результате стало действительно возможным говорить о сравнительной геологии, сравнительной метеорологии и климатологии, на новую основу поставить проблему генезиса небесных тел, которая непосредственно связана с общими проблемами ядерной и химической эволюции вещества Солнечной системы.

Для грядущих поколений наша эпоха будет отмечена одним из важнейших с точки зрения исторической перспективы свершений человечества — выходом в космос. Тем самым доказана возможность и положено начало длительному периоду распространения сферы обитания за пределы ограниченного региона Солнечной системы — планеты Земля.

Что же дальше? Космические экспедиции, высадки людей на планеты, их обживание, создание лунных, марсианских и других постоянно действующих баз? Мы убеждены, что человечество придет к этому новому этапу, но, конечно, не в этом столетии. Прежде всего потому, что возможности автоматов далеко не исчерпаны, а скорее наоборот, непрерывно расширяются. Другой чрезвычайно серьезной причиной является то, что существующие технические средства малопригодны для межпланетных сообщений — они слишком тяжелы, громоздки и неэффективны. Нужны новые двигатели космических ракет — ядерные, электрореактивные, но они, к сожалению, пока еще недостаточно отработаны и не обладают необходимой тягой. Среди других проблем важнейшими являются и те, которые непосредственно связаны с обеспечением жизнедеятельности и длительным пребыванием человека в космическом пространстве. Наконец, не следует забывать о том, сколь много средств потребует организация каждой такой экспедиции, между тем как сейчас существует множество других проблем на нашей планете, решение которых, также требующее огромных затрат, несомненно, имеет больший приоритет; И надо ли еще говорить о том, что снаряжение и посылка подобных экспедиций должна быть результатом коллективных усилий развитых стран мира, актом международного сотрудничества, предпринимаемым в интересах всех людей на Земле, в отличие от существующих усилий совершенствования и наращивания вооружений ставящих под угрозу само существование цивилизации?

По соседству с нами лежат еще безжизненные безграничные пространства, новые регионы в виде других планет и астероидов, которые со временем, преодолев космический океан, начнут осваивать первые поселенцы «нового света».

Сегодня это может показаться фантастическим, но несомненно, что родятся проекты изменения в более благоприятном направлении существующих климатических условий на Венере и Марсе, будут созданы поселения на Луне, начнут разрабатываться астероиды. Что же касается расстояний, то вспомним, что Христофору Колумбу потребовалось 70 дней, чтобы пересечь Атлантический океан — две трети времени полета автоматической станции до Венеры. И подобно тому как сейчас преодоление расстояния между Европой и Америкой измеряется часами, с прогрессом техники столь же резко уменьшится время полета к планетам. Одновременно уменьшится и степень риска, такие сообщения станут регулярными, обычными.

Неизбежность этого процесса довольно очевидна. Не следует забывать, что уровень развития жизни на Земле приобрел черты технологически развитой цивилизации лишь за последние примерно 100 лет, в то время как человечество существует уже сотни тысяч лет. И вот уже по истечении этого совсем незначительного периода бурного развития цивилизации начал ощущаться недостаток в источниках минерального сырья, энергетических ресурсов, возникли проблемы перенаселенности отдельных районов, загрязнения окружающей среды и т. п. Соответственно обострились и социальные проблемы в условиях непрерывно возрастающих темпов научно-технического прогресса и экономического развития. Несомненно, что человечество третьего тысячелетия будет поставлено перед необходимостью освоения новых территорий в ближайшей окрестности собственной звезды, максимального использования ее энергетической отдачи, освоения громадных природных богатств планет и астероидов.

Таким образом, цель изучения планет не ограничивается и не исчерпывается4 накоплением знаний о том, как устроены и функционируют соседние с нами миры, как они возникли и эволюционировали. Это — один из разделов фундаментальных наук, с которым будет тесным образом связано решение многих технико-экономических и социальных проблем на пути дальнейшего развития цивилизации.

Человек в современном мире (ограниченном по своим масштабам и довольно «хрупком» по адаптивной способности) все в большей степени приобщается к достижениям индустриальной революции. Происходит парадоксальная ситуация: неосознанно находясь у нее в плену, он вместе с тем теряет способность удивляться новым научным и техническим достижениям, воспринимая их часто как само собой разумеющееся, и одновременно перестает задумываться о сопряженных с ними реальных перспективах и последствиях. Между тем стремление к новому, таинственному, загадочному сохраняется, питая человеческую фантазию и подчас приводя к мистификациям типа будоражащих умы мифах о «космических пришельцах», «инопланетянах-гуманоидах». Вряд ли нужно лишний раз доказывать, что эти фантазии не имеют под собой ни малейшей научной основы и мы надеемся, что содержание этой книги поможет лучше понять грань, отделяющую реальность от вымысла.

Но вот перспектива перехода человечества к новому этапу — освоению Солнечной системы — безусловно научна, продиктована логикой его предыдущего развития и дальнейшего прогресса, а по своей грандиозности и значимости не имеет себе равных и действительно будоражит воображение. Она достойна того, чтобы люди планеты Земля, раз и навсегда покончив с конфликтами, объединили усилия в этом благородном начинании. В нем — залог дальнейшего поступательного развития человеческой цивилизации, которое мы связываем с воплощением наших коммунистических идеалов. Одновременно расширятся перспективы установления контактов с другими подобными цивилизациями в нашей Галактике и за ее пределами. Это многократно усилит «шепоты Земли», как назван рассказ о нашей прекрасной планете, записанный на специальных металлических пластинках, вложенных внутрь космических аппаратов, которым предстоит покинуть Солнечную систему. И тогда это будет уже рассказ не только о колыбели человечества, по образному выражению нашего великого соотечественника, основоположника космонавтики К. Э. Циолковского, но рассказ о всем околосолнечном пространстве, которое оно сумеет сделать своим одним большим домом.

Человечество является полноправным хозяином своей звезды, хозяином пока еще безжизненных планет, и несомненно, что не в столь уж отдаленной перспективе сможет овладеть их богатствами.

Как будет проходить колонизация других планет?

В научно-фантастических фильмах и книгах колонизация других планет кажется простой. Все, что вам нужно, это совершить прыжок в «гиперпространство» на вашем звездном крейсере, и - вуаля - вы пробиваете сложенное пространство-время и мгновенно прибываете в пункт назначения. На самом деле, мы будем колонизировать космос не крупными прыжками, а серией небольших шагов, начиная с успешного проживания на низкой околоземной орбите.

Сегодня это трудно представить, но в первые дни после запуска «Спутника» ученые даже не подозревали, что люди смогут выживать в течение длительных периодов времени в космосе. Первые полеты в космос осуществлялись силами животных, а не астронавтов, и только в 1961 году Юрий Гагарин взмыл на пылающей ракете в космос. Исторический полет Гагарина длился всего 108 минут, но заложил основу для более длительных миссий.

К середине 1970-х годов астронавты успешно осели в орбитальных космических станциях. Первыми стали «Салют» и «Скайлэб», затем появилась «Мир». На станции «Мир» космонавты продолжали бить рекорды проживания в космосе. Муса Манаров и Владимир Титов провели год на борту советской станции в конце 80-х годов, а в 1995 году Валерий Поляков преодолел их рекорд, завершив 438-дневное дежурство в космосе.

Сегодня Международная космическая станция (МКС) выступает в качестве четкого свидетельства того, что люди могут бесконечно долго жить на низкой околоземной орбите. С тех пор, как первый экипаж МКС прибыл на станцию в 2000 году, МКС стала постоянным плацдармом для проведения экспериментов, наблюдения за космосом и в целом жизни космонавтов и астронавтов в космосе.

От низкой околоземной орбите нам просто нужно сделать прыжок и достичь Луны (условно говоря). Она должна стать нашим следующим пунктом назначения. Должна, но может и не стать.

Освоение Луны

С тех пор как программа «Аполлон» поместила Луну в пределах нашей досягаемости, создание базы на Луне казалось следующим логическим шагом. Естественный спутник Земли имеет ряд преимуществ по сравнению с более экзотическими лунами вроде Титана, спутника Сатурна. Во-первых, он находится относительно близко, а значит, экипажи могут сменяться в течение нескольких дней. Также это подразумевает хорошую связь между колонистами и командирами миссии на Земле, то есть без существенных задержек. Луна могла бы стать идеальным космопортом, потому что ракеты могли бы покидать ее низкую гравитацию без особых затрат энергии. Наконец, лунная обсерватория существенно облегчила бы изучение Вселенной и поиск мест, куда можно было бы отправиться в дальнейшем.

Правда, жизнь на Луне будет непростой. В отсутствие атмосферы можно добавить существенные перепады температур, от 134 градусов по Цельсию в полдень до минус 170 градусов по Цельсию в ночь. Поверхность Луны постоянно шлифуется микрометеоритами и космическими лучами. Чтобы пережить это, колонистам придется обустраивать свои жилища под лунной почвой или в лунных кратерах.

Также возникает вопрос касательно еды и воды. Ученые знают, что на Луне имеется довольно много воды, но нужны специальные устройства, чтобы ее извлечь. И выращивание растений в течение длинных лунных ночей, не имея насекомых для опыления, будет весьма сложным.

Несмотря на эти трудности, некоторые страны разрабатывают возможности освоения Луны. Не так давно стало известно о планах России по созданию лунной базы. Также в 2010 году была приостановлена американская программа Constellation, в рамках которой на Луну должны были отправиться космические аппараты нового поколения. В любом случае можно констатировать, что внимание общественности сейчас обращено по большей части на Марс.

Колонизация Марса

Некоторые ученые считают, что нам нужно пропустить Луну и отправиться прямо на Марс. Одним из самых горячих сторонников этой стратегии является Роберт Субрин, основатель и президент Mars Society. В 1996 году он изложил подробности миссии Mars Direct, которую можно назвать образцовым планом для пилотируемых поездок на Красную планету.

Вот как это будет выглядеть. Первый запуск будет включать беспилотный Earth Return Vehicle, или ERV, который отправится на Марс. ERV должен быть оснащен ядерным реактором, с помощью которого можно будет изготовить топливо, используя элементы марсианской атмосферы. Двумя годами спустя будет запущен второй беспилотный ERV, который отправится в новое место для посадки. В то же время будет отправлен пилотируемый космический корабль, который должен будет приземлиться рядом с первым ERV. Экипаж будет находиться на Марсе в течение 18 месяцев, исследуя планету и проводя эксперименты, пока не наступит время возвращаться на Землю, используя топливо, добытое прямо на Марсе. После того как первая команда отправится на Землю, прибудет вторая группа исследователей, и весь процесс повторится.

Долгосрочное проживание в марсианских колониях, однако, потребует преобразования планеты, так называемого терраформирования.

Терраформирование включает подъем температуры на Марсе до земных условий. Единственный реалистичный способ сделать это - построить блоки обработки почвы, которые будут накачивать сверхпарниковые газы вроде метана и аммиака в атмосферу Марса. Эти газы будут абсорбировать солнечную энергию и согревать планету, запуская выброс диоксида углерода из почвы и полярных ледяных шапок. По мере того как диоксид углерода будет увеличиваться в атмосфере, давление будет падать, обеспечивая дополнительное тепло и образование океанов. В конце концов колонисты начнут обходиться без скафандров, хотя будут вынуждены носить кислородные баллоны.

После нескольких десятилетий терраформирования, Красная планета будет выглядеть практически так же, как и наша родная. Спустя еще несколько десятилетий она будет практически неотличима от Земли. Если это произойдет, Марс может стать вторым домом для людей.

Колонии за пределами Марса

Астероиды - эти скалистые объекты, которые вращаются вокруг Солнца в широком диапазоне между Марсом и Юпитером - могли бы стать ступенью к внешним планетам. Существует только около сотни астероидов шириной более 200 километров, но общее число их превышает миллиарды, а это хороший ресурс для использования в Солнечной системе. Среди самых больших астероидов царит Церера (или карликовая планета, с какой стороны посмотреть), и после ее тщательного исследования она вполне может стать вариантом для форпоста. С одной стороны, сам факт существования жидкой воды под ее поверхностью может быть определяющим.

Как люди могут колонизировать астероид? Один из вариантов - превратить его в город. Это потребует существенных усилий по «выдалбливанию» внутренностей этого камешка. Другой вариант - построить «город в небе», космическую станцию, которая будет вращаться вокруг астероида. Такая идея витает в воздухе уже много лет.

В 1975 году группа профессоров, технических директоров и студентов собралась на 10 недель в Стэнфордском университете и Научно-исследовательском центре Эймса, чтобы разработать проект космических поселений. Они предложили создать колесоподобное жилище диаметром 1,6 километра. Колонисты жили бы в трубе по периметру колеса, который соединялся бы с помощью шести «спиц» с центральным доком. Вся структура вращалась бы, имитируя гравитацию Земли, и с помощью зеркал собирала бы солнечный свет для использования в производстве электроэнергии и сельском хозяйстве.

В любом случае сейчас активно прорабатываются варианты с освоением Марса. Правда, не все они выглядят одинаково привлекательными. А вы готовы возглавить путешествие за пределы Солнечной системы?

Курс на планету в другой системе

Сли мы собираемся колонизировать планету в другой звездной системе, нам нужно ответить на два вопроса. Во-первых, существует ли подходящая планета для нашего вида за пределами Солнечной системы? Ответ: конечно, да. Телескоп Кеплер уже нашел сотни планет, которые могут нам подойти.

Второй вопрос чисто логистический: как добраться до планеты, расположенной за триллионы километров от нас? Чтобы ответить на этот вопрос, нам нужно переосмыслить космические путешествия. Возможно, провести несколько революций в сфере освоения космоса. К примеру, мысль о том, что один экипаж долетит до далекой планеты, весьма сомнительна. Скорее понадобится «корабль поколений», на котором успеет родиться и умереть несколько поколений людей.

Возможно, мы найдем червоточину или освоим двигатель на эффекте Казимира. Есть и более реалистичные варианты вроде солнечного паруса. Ионные двигатели используют солнечные батареи для выработки электрического поля, которое ускоряет заряженные атомы ксенона. Такой двигатель в настоящее время питает миссию зонда Dawn, исследующего Цереру. Ракеты на антивеществе могут быть чрезвычайно эффективны и достигать высоких скоростей, но эта технология пока скорее гипотетическая.

В конце концов, хорошим решением может быть сочетание всех этих технологий. И это в очередной раз доказывает, что освоение глубокого космоса потребует сотрудничества и взаимодействия между учеными разных стран и направленностей. Как ни крути, космос объединяет.