Абсолютная влажность что. Абсолютная и относительная влажность. Точка росы. Измерение влажности воздуха в помещении

Количество влаги, содержащейся в одном кубическом метре воздуха. Из-за малой величины обычно измеряют в г/м³. Но в связи с тем, что при определённой температуре воздуха в нем может максимально содержаться только определённое количество влаги (с увеличением температуры это максимально возможное количество влаги увеличивается, с уменьшением температуры воздуха максимальное возможное количество влаги уменьшается), ввели понятие относительной влажности.

Относительная влажность

Эквивалентное определение - отношение молярной доли водяного пара в воздухе к максимально возможной при данной температуре . Измеряется в процентах и определяется по формуле:

где: - относительная влажность рассматриваемой смеси (воздуха); - парциальное давление паров воды в смеси; - равновесное давление насыщенного пара .

Давление насыщенных паров воды сильно растёт при увеличении температуры. Поэтому при изобарическом (то есть, при постоянном давлении) охлаждении воздуха с постоянной концентрацией пара наступает момент (точка росы), когда пар насыщается. При этом «лишний» пар конденсируется в виде тумана или кристалликов льда . Процессы насыщения и конденсации водяного пара играют огромную роль в физике атмосферы : процессы образования облаков и образование атмосферных фронтов в значительной части определяются процессами насыщения и конденсации, теплота, выделяющаяся при конденсации атмосферного водяного пара обеспечивает энергетический механизм возникновения и развития тропических циклонов (ураганов).

Оценка относительной влажности

Относительная влажность водно-воздушной смеси может быть оценена, если известны её температура (T ) и температура точки росы (T d ). Когда T и T d выражены в градусах Цельсия , тогда истинно выражение:

где парциальное давление водного пара в смеси оценено :

и влажное давление пара воды в смеси при температуре оценено :

Пересыщенный водяной пар

В отсутствие центров конденсации при снижении температуры возможно образование пересыщенного состояния, то есть относительная влажность становится более 100 %. В качестве центров конденсации могут выступать ионы или частицы аэрозолей , именно на конденсации пересыщенного пара на ионах , образующихся при прохождении заряженной частицы в таком паре основан принцип действия камеры Вильсона и диффузионных камер: капельки воды, конденсирующиеся на образовавшихся ионах образуют видимый след (трек) заряженной частицы.

Другим примером конденсации перенасыщенного водяного пара являются инверсионные следы самолётов, возникающие при конденсации перенасыщенного водяного пара на частицах сажи выхлопа двигателей.

Средства и методы контроля

Для определения влажности воздуха используются приборы, которые называются психрометрами и гигрометрами . Психрометр Августа состоит из двух термометров - сухого и влажного. Влажный термометр показывает температуру ниже, чем сухой, так как его резервуар обмотан тканью, смоченной в воде, которая, испаряясь, охлаждает его. Интенсивность испарения зависит от относительной влажности воздуха. По показаниям сухого и влажного термометров находят относительную влажность воздуха по психрометрическим таблицам. В последнее время стали широко применяться интегральные датчики влажности (как правило, с выходом по напряжению), основанные на свойстве некоторых полимеров изменять свои электрические характеристики (такие, как диэлектрическая проницаемость среды) под действием содержащихся в воздухе паров воды.

Для повышения относительной влажности в жилых помещениях используют электрические увлажнители , наполненные мокрым керамзитом поддоны и регулярное опрыскивание.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Относительная влажность" в других словарях:

    Отношение молярной доли влаги в газе к молярной доле насыщенного водяного пара над водой [льдом] в этом газе при тех же давлении и температуре. Единица измерения % [РМГ 75 2004] Тематики измерения влажности веществ Обобщающие термины величины… … Справочник технического переводчика

    относительная влажность - Процентное отношение упругости водяного пара, содержащегося в единице объема воздуха, к упругости насыщающего пара при той же температуре … Словарь по географии

    Относительная влажность - 16. Относительная влажность D. Relative Feuchtigkeit E. Relative humidity F. Humidite relative Отношение парциального давления водяного пара к давлению насыщенного пара при одних и тех же давлении я температуре Источник … Словарь-справочник терминов нормативно-технической документации

    Отношение упругости водяного пара, содержащегося в воздухе, к упругости насыщенного пара при той же температуре; выражается в процентах. * * * ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ, отношение упругости водяного пара (см. УПРУГОСТЬ… … Энциклопедический словарь

    относительная влажность - drėgnis statusas T sritis Standartizacija ir metrologija apibrėžtis Drėgmės ir ją sugėrusios medžiagos masių arba tūrių dalmuo, dažniausiai išreikštas procentais. atitikmenys: angl. relative humidity vok. relative Feuchte, f; relative… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    относительная влажность - santykinis drėgnis statusas T sritis chemija apibrėžtis Drėgmės ir drėgnos medžiagos, kurioje ji yra, masių arba tūrių santykis (%). atitikmenys: angl. relative humidity rus. относительная влажность … Chemijos terminų aiškinamasis žodynas

    относительная влажность - drėgnis statusas T sritis fizika atitikmenys: angl. relative humidity vok. relative Feuchte, f; relative Feuchtigkeit, f rus. относительная влажность, f pranc. humidité relative, f … Fizikos terminų žodynas
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

  • обеспечить усвоение понятия влажность воздуха;
  • развивать самостоятельность учащихся; мышление; умение делать выводы;развитие практических навыков при работе с физическим оборудованием;
  • показать практическое применение и важность данной физической величины.

Тип урока: урок изучения нового материала.

Оборудование:

  • для фронтальной работы: стакан с водой, термометр, кусок марли; нитки, психрометрическая таблица.
  • для демонстраций: психрометр, волосяной и конденсационный гигрометры, груша, спирт.

Ход урока

I. Повторение и проверка домашнего задания

1. Сформулируйте определение процессов парообразования и конденсации.

2. Какие виды парообразования вы знаете? Чем они отличаются друг от друга?

3. При какихусловиях происходит испарение жидкости?

4. От какихфакторов зависит скорость испарения?

5.Что такое удельнаятеплота парообразования?

6. На чторасходуется подводимое количество теплоты при парообразовании?

7. Почему приветрежара переносится легче?

8. Одинакова ли внутренняя энергия 1 кг воды и пара при температуре 100 о С

9. Почему вода в бутылке, плотно закрытой пробкой, не испаряется?

II. Изучение нового материала

Водяной пар в воздухе, несмотря на огромные поверхности рек, озер, океановне является насыщенным, атмосфера открытый сосуд. Движение воздушных масс приводит к тому, что в одних местах в данный момент испарение воды преобладает над конденсацией, а в других наоборот.

Атмосферный воздух представляет собой смесь различных газов и водяного пара.

Давление, которое производил бы водяной пар, если бы все остальные газыотсутствовали, называют парциальным давлением (или упругостью) водяного пара.

За характеристику влажности воздуха может быть принята плотность водяного пара , содержащегося в воздухе. Эту величину называют абсолютной влажностью [г/м 3 ].

Знания парциального давления водяного пара или абсолютной влажности ничего не говорят, насколько водяной пар далек от насыщения.

Для этого вводят величину, показывающую, насколько водяной пар при данной температуре близок к насыщению - относительная влажность.

Относительной влажностью воздуха называют отношение абсолютной влажности воздуха к плотности 0 насыщенного водяного пара при той же температуре, выраженной в процентах.

Р - парциальное давление при данной температуре;

Р 0 - давление насыщенного пара при той же температуре;

Абсолютная влажность;

0 - плотность насыщенного водяного пара при данной температуре.

Давление и плотность насыщенного пара при различных температурах можно найти, воспользовавшись специальными таблицами.

При охлаждении влажного воздуха при постоянном давлении его относительная влажность повышается, чем ниже температура, тем ближе парциальное давление пара в воздухе к давлению насыщенного пара.

Температура t, до которой должен охладиться воздух, чтобы находящийся в нем пар достиг состояния насыщения (при данной влажности, воздуха и неизменном давлении), называется точкой росы.

Давление насыщенного водяного пара при температуре воздуха равной точке росы, есть парциальное давление водяного пара, содержащегося в атмосфере. При охлаждении воздуха до точки росы начинается конденсация паров: появляется туман, выпадает роса. Точка росы также характеризует влажностьвоздуха.

Влажность воздуха можно определить специальными приборами.

1. Конденсационный гигрометр

С его помощью определяют точку росы. Это наиболее точный способ изменения относительной влажности.

2. Волосяной гигрометр

Его действиеосновано на свойствеобезжиренного человеческого волос а удлиняться при увеличении относительной влажности.

Применяется втех случаях, когда вопределении влажности воздуха не требуется большой точности.

3. Психрометр

Обычно пользуются в тех случаях, когда требуется достаточно точное и быстрое определение влажности воздуха.

Значение влажности воздуха для живых организмов

При температуре 20-25°С наиболее благоприятным для жизни человека считается воздух с относительной влажностью от 40% до 60%. Когда окружающая среда имеет температуру более высокую, чем температура тела человека, то происходит усиленное потоотделение. Обильное выделение пота ведет к охлаждению организма. Однако такое потоотделение является значительной нагрузкой для человека.

Относительная влажность ниже 40% при нормальной температуре воздуха также вредна, так как приводит к усиленной потере влаги организмов, что ведет к его обезвоживанию. Особенно низкая влажность воздуха в помещениях в зимнее время; она составляет 10-20%. При низкой влажности воздуха происходит быстрое испарение влаги с поверхности и высыхание слизистой оболочки носа, гортани, легких, что может привести к ухудшению самочувствия. Также при низкой влажности воздуха во внешней среде дольше сохраняются патогенные микроорганизмы, а на поверхности предметов скапливается больше статического заряда. Поэтому в зимнее время в жилых помещениях производят увлажнение с помощью пористых увлажнителей. Хорошими увлажнителями являются растения.

Если относительная влажность высокая, то мы говорим, что воздух влажный и удушливый . Высокая влажность воздуха действует угнетающе, поскольку испарение происходит очень медленно. Концентрация паров воды в воздухе в этом случае высока, вследствие чего молекулы из воздуха возвращаются в жидкость почти так же быстро, как и испаряются. Если пот с тела испаряется медленно, то тело охлаждается очень слабо, и мы чувствуем себя не совсем комфортно. При относительной влажности 100% испарение вообще не может происходить - при таких условиях мокрая одежда или влажная кожа никогда не высохнут.

Из курса биологии вы знаете о разнообразных приспособлениях растений в засушливых местностях. Но растения приспособлены и к высокой влажности воздуха. Так, родина Монстеры - влажный экваториальный лес Монстера при относительной влажности, близкой к 100%, "плачет", она удаляет избытки влаги через отверстия в листьях - гидатоды. В современных зданиях производится кондиционирование воздуха создание и поддержание в закрытых помещениях воздушной среды, наиболееблагоприятной для самочувствия людей. При этом автоматически регулируется температура, влажность, состав воздуха.

Исключительное значение для образования заморозка имеет влажность воздуха. Если влажность велика и воздух близок к насыщению парами, то при понижении температуры воздух может стать насыщенным и начнет выпадать роса.Но при конденсации водяных паров выделяется энергия (удельная теплота парообразования при температуре, близкой к 0 °С, равна 2490 кДж/кг), поэтому воздух у поверхности почвы при образовании росы не будет охлаждаться ниже точки росы и вероятность наступления заморозка уменьшится. Вероятность заморозка зависит, во-первых, от быстроты понижения температуры и,

Во-вторых, от влажности воздуха. Достаточно знать одно из этих данных, чтобы более или менее точно предсказать вероятность заморозка.

Вопросы на повторение:

  1. Что понимается под влажностью воздуха?
  2. Что называют абсолютной влажностью воздуха? Какая формула выражает смысл этого понятия? В каких единицах ее выражают?
  3. Что такое упругость водяного пара?
  4. Что называют относительной влажностью воздуха? Какие формулы выражают смысл этого понятия в физике и метеорологии? В каких единицах ее выражают?
  5. Относительная влажность воздуха 70%, что это значит?
  6. Что называют точкой росы?

С помощью каких приборов определяют влажность воздуха? Каковы субъективные ощущения влажности воздуха человеком? Начертив рисунок, объясните устройство и принцип работы волосяного и конденсационного гигрометров и психрометра.

Лабораторная работа №4 "Измерение относительной влажности воздуха"

Цель:научиться определять относительную влажность воздуха, развить практические навыи при работе с физическим оборудованием.

Оборудование: термометр, марлевый бинт, вода, психометрическая таблица

Ход урока

Перед выполнением работы необходимо обратить внимание учащихся не только на содержание и ход выполнения работы, но и на правила обращения с термометрами и стеклянными сосудами. Нужно напомнить, что все время, пока термометр не используется для измерений, он должен находиться в футляре. При измерении температуры термометр следует держать за верхний край. Это позволит определить температуру с наибольшей точностью.

Первые измерения температуры следует провести сухим термометром Эта температура в аудитории во время работы не изменится.

Для измерения температуры влажным термометром лучше в качестве ткани взять кусочек марли. Марля очень хорошо впитывает и перемещает воду от влажного края к сухому.

Используя психрометрическую таблицу, легко определить значение относительной влажности.

Пусть t c = h = 22 °С, t m = t 2 = 19 °С. Тогда t = t c - 1 Ш = 3 °С.

По таблице находим относительную влажность. В данном случае она равна 76%.

Для сравнения можно измерить относительную влажность воздуха на улице. Для этого группу из двух-трех учеников, успешно справившихся с основной частью работы, можно попросить провести аналогичные измерения на улице. Это должно занять не более 5 минут. Полученное значение влажности можно сравнить с влажностью в классе.

Итоги работы подводят в выводах. В них следует отметить не только формальные значения итоговых результатов, но и указать причины, которые приводят к погрешностям.

III. Решение задач

Так как данная лабораторная работа достаточно проста по содержанию и невелика по объему, оставшуюся часть урока можно посвятить решению задач по изучаемой теме. Для решения задач не обязательно, чтобы все ученики стали решать их одновременно. По мере выполнения работы они могут получать задания индивидуально.

Можно предложить следующие простые задачи:

На улице идет холодный осенний дождь. В каком случае быстрее высохнет белье, развешенное на кухне: когда форточка открыта, или когда закрыта? Почему?

Влажность воздуха равна 78%, а показание сухого термометра равно 12 °С. Какую температуру показывает влажный термометр? (Ответ: 10 °С.)

Разность в показаниях сухого и влажного термометров равна 4 °С. Относительная влажность воздуха 60%. Чему равны показания сухого и влажного термометра? (Ответ: t c -l9 °С, t m = 10 °С.)

Домашнее задание

  • Повторить параграф 17 учебника.
  • Задание № 3. с. 43.

Сообщения учащихся о роли испарения в жизни растений и животных.

Испарение в жизни растений

Для нормального существования растительной клетки необходимо ее насыщение водой. Для водорослей оно является естественным следствием условий их существования, у растений суши достигается в результате двух противоположных процессов: поглощения воды корнями и испарения. Для успешного фотосинтеза хло-!рофиллоносные клетки наземных растений должны поддерживать самое тесное соприкосновение с окружающей атмосферой, снабжающей их необходимым для них углекислым газом; однако это тесное соприкосновение неизбежно приводит к тому, что насыщающая клетки вода непрерывно испаряется в окружающее пространство, и та же солнечная энергия, которая доставляет растению необходимую для фотосинтеза энергию, поглощаясь хлорофиллом, способствует нагреванию листа, а тем самым и усилению процесса Испарения.

Очень немногие, и притом низкоорганизованные, растения, нииример мхи и лишайники, могут выдерживать длительные перерывы в водоснабжении и переносить это время в состоянии полного иыеыхания. Из высших растений к этому способны лишь некоторые представители скальной и пустынной флоры, например осока, распространенная в песках Каракумов. Для громадного большинства ш.кших растений такое высыхание было бы смертельно, а потому │сход воды у них примерно равен ее приходу.

Чтобы представить себе масштабы испарения воды растениями, приведем такой пример: за один вегетационный период одно Цветение подсолнечника или кукурузы испаряет до 200 кг и более воды, т. е. солидных размеров бочку! При таком энергичном расходе требуется не менее энергичное добывание воды. Для этого (Мужит корневая система, размеры которой огромны счеты числа корней и корневых волосков для озимой ржи дали следующие удивительные цифры: корней оказалось почти четырпл дцать миллионов, общая длина всех корней 600 км, а их общая по верхность около 225 м 2 . На этих корнях было около 15 миллиардом корневых волосков общей площадью в 400 м 2 .

Количество воды, расходуемое растением в течение своем жизни, в большой степени зависит от климата. В жарком сухом климате растения потребляют не меньше, а иногда даже больше во ды, чем в климате более влажном, у этих растений более развита корневая система и меньшее развитие имеет листовая поверхносп. Меньше всего расходуют воду растения сырых, тенистых тропиче ских лесов, берегов водоемов: у них тонкие широкие листья, слабые корневая и проводящая системы. У растений засушливых местно стей, где воды в почве очень мало, а воздух горяч и сух, наблюда ются разнообразные приемы приспособления к этим суровым условиям. Интересны растения пустынь. Это, например, кактусы растения с толстыми мясистыми стволами, листья которых превра тились в колючки. У них незначительная поверхность при большом объеме, толстые покровы, мало проницаемые для воды и водяного пара, с немногочисленными, почти всегда закрытыми устьицами. Поэтому даже в сильную жару кактусы испаряют мало воды.

У других растений зоны пустынь (верблюжьей колючки, степной люцерны, полыни) тонкие листья с широко открытыми устьицами, которые энергично ассимилируют и испаряют, за счет чего значительно снижается температура листьев. Часто листья бывают покрыты густым слоем серых или белых волосков, представляющих как бы полупрозрачный экран, защищающий растения от перегревания и снижающий интенсивность испарения.

Многие растения пустынь (ковыль, перекати-поле, вереск) имеют жесткие, кожистые листья. Такие растения способны переносить длительное завядание. В это время их листья скручиваются в трубку, причем устьица находятся внутри нее.

Условия испарения зимой резко меняются. Из мерзлой почвы корни не могут всасывать воду. Поэтому за счет листопада уменьшается испарение влаги растением. Кроме того, при отсутствии листьев меньше снега задерживается на кроне, что предохраняет растения от механических повреждений.

Роль процессов испарения для животных организмов

Испарение - это наиболее легко регулируемый способ меньшения внутренней энергии. Всякие условия, затрудняющие спарение, нарушают регулирование теплоотдачи организма. Так, ожаная, резиновая, клеенчатая, синтетическая одежда затрудняет егулировку температуры тела.

Для терморегуляции организма важную роль играет потоот-еление, оно обеспечивает постоянство температуры тела человека ли животного. За счет испарения пота уменьшается внутренняя нергия, благодаря этому организм охлаждается.

Нормальным для жизни человека считается воздух с относительной влажностью от 40 до 60%. Когда окружающая среда имеет температуру более высокую, чем тело человека, то происходит усиленное. Обильное выделение пота ведет к охлаждению организма, помогает работать в условиях высокой температуры. Однако такое активное потоотделение является значительной нагрузкой для человека! Если еще при этом абсолютная влажность высока, то жить и работать становится еще тяжелее (влажные тропики, некоторые цеха, например красильные).

Относительная влажность ниже 40% при нормальной температуре воздуха тоже вредна, так как приводит к усиленной потере влаги организмом, что ведет к его обезвоживанию.

Очень интересны с точки зрения терморегуляции и роли процессов испарения некоторые живые существа. Известно, например, что верблюд может две недели не пить. Объясняется это тем, что он очень экономно расходует воду. Верблюд почти не потеет даже в сорокаградусную жару. Его тело покрыто густой и плотной шерстью - шерсть спасает от перегрева (на спине верблюда в знойный полдень она нагрета до восьмидесяти градусов, а кожа под ней -лишь до сорока!). Шерсть препятствует и испарению влаги из организма (у стриженого верблюда потоотделение возрастает на 50%). Верблюд никогда, даже самый сильный зной, не раскрывает рта: ведь со слизистой оболочки ротовой полости, если открыть широко рот, испаряете много воды! Частота дыхания верблюда очень низка -8 раз минуту. За счет этого меньше воды уходит из организма с воздухом. В жару, однако, частота дыхания его увеличивается до 16 раз в минуту. (Сравните: бык при этих же условиях дышит 250, а собака - 300-400 раз в минуту.) Кроме того, температура тела верблюда понижается ночью до 34°, а днем, в жару, повышается до 40-41°. Это очень важно для экономии воды. У верблюда имеется так же очень любопытное приспособление для сохранения воды впрок Известно, что из жира, когда он "сгорает" в организме, получается много воды - 107 г из 100 г жира. Таким образом, из своих горбои верблюд при необходимости может извлечь до полцентнера воды.

С точки зрения экономии в расходовании воды еще более удивительны американские тушканчиковые прыгуны (кенгуровые крысы). Они вообще никогда не пьют. Кенгуровые крысы живут и пустыне Аризона и грызут семена и сухие травы. Почти вся вода, которая имеется в их теле, эндогенная, т.е. получается в клетках при переваривании пищи. Опыты показали, что из 100 г перловой кру пы, которой кормили кенгуровых крыс, они получали, переварив и окислив ее, 54 г воды!

В теплорегуляции птиц большую роль играют воздушные мешки. В жаркое время с внутренней поверхности воздушных меш ков испаряется влага, что способствует охлаждению организма. II связи с этим птица в жаркую погоду открывает клюв. (Кац //./> Биофизика на уроках физики. - М.: Просвещение, 1974).

п. Самостоятельная работа

Какое количество теплоты выделится мри полном сгорании 20 кг каменного угля? (Ответ: 418 МДж)

Какое количество теплоты выделится при полном сгорании 50 л метана? Плотность метана примите равной 0,7 кг/м 3 . (Ответ: -1,7 МДж)

На стаканчике с йогуртом написано: энергетическая ценность 72 ккал. Выразите энергетическую ценность продукта в Дж.

Теплота сгорания суточного рациона питания для школьников вашего возраста составляет около 1,2 МДж.

1) Достаточно ли для вас потребление в течение для 100 г жирного творога, 50 г пшеничного хлеба, 50 г говядины и 200 г картофеля. Необходимые дополнительные данные:

  • творог жирный 9755;
  • хлеб пшеничный 9261;
  • говядина 7524;
  • картофель 3776.

2) Достаточно ли для вас потребление в течение дня 100 г окуня, 50 г свежих огурцов, 200 г винограда, 100 г ржаного хлеба, 20 г подсолнечного масла и 150 г сливочного мороженого.

Удельная теплота сгорания q x 10 3 , Дж/кг:

  • окунь 3520;
  • огурцы свежие 572;
  • виноград 2400;
  • хлеб ржаной 8884;
  • масло подсолнечное 38900;
  • мороженое сливочное 7498. ,

(Ответ: 1) Потреблено примерно 2,2 МДж - достаточно; 2) Потреблено к 3,7 МДж - достаточно.)

При подготовке к урокам в течение двух часов вы тратите около 800 кДж энергии. Восстановите ли вы запас энергии, если выпьете 200 мл обезжиренного молока и съедите 50 г пшеничного хлеба? Плотность обезжиренного молока равна 1036 кг/м 3 . (Ответ: Потреблено примерно 1 МДж - достаточно.)

Воду из мензурки перелили в сосуд, нагреваемый пламенем спиртовки, и испарили. Рассчитайте массу сгоревшего спирта. Нагреванием сосуда и потерями на нагревание воздуха можно пренебречь. (Ответ: 1,26 г.)

  • Какое количество теплоты выделится при полном сгорании 1 т антрацита? (Ответ: 26,8 . 109 Дж.)
  • Какую массу биогаза надо сжечь, чтобы выделилось 50 МДж теплоты? (Ответ: 2 кг.)
  • Какое количество теплоты выделится при сгорании 5 л мазута. Плотность мазута примите равной 890 кг/м 3 . (Ответ: примерно 173 МДж.)

На коробке конфет написано: калорийность 100 г 580 ккал. Выразите нилорийность продукта в Дж.

Изучите этикетки разных пищевых продуктов. Запишите энергети-I, с кую ценность (калорийность) продуктов, выразив ее в джоулях или ка-Юриях (килокалориях).

При езде на велосипеде за 1 час вы тратите примерно 2 260 000 Дж щергии. Восстановите ли вы запас энергии, если съедите 200 г вишни?

На данном уроке, тема которого: «Влажность. Измерение влажности», мы обсудим свойства насыщенного и ненасыщенного водяного пара, который всегда присутствует в атмосфере.

На предыдущем уроке мы с вами познакомились с понятием «насыщенный пар». Как при изучении любых тем и предметов, может возникнуть вопрос: «Где же мы пользуемся этим понятием, как мы его будем применять?». Самое важное применение свойств насыщенного пара мы и обсудим на данном уроке.

Название темы наверняка вам хорошо известно, ведь понятие «влажность воздуха» вы каждый день слышите, когда смотрите или слушаете прогноз погоды. Однако если вас спросят: «Что же понимается под влажностью воздуха?», вы вряд ли сразу дадите точное физическое определение.

Попробуем сформулировать, что же в физике понимается под влажностью воздуха. Прежде всего, что это за вода содержится в воздухе? Ведь таковой, например, является туман, дождь, облака и прочие атмосферные явления, проходящие с участием воды в том или ином агрегатном состоянии. Если все эти явления учитывать при описании влажности, то как же проводить измерения? Уже из таких простых рассуждений становится ясно, что интуитивными определениями здесь не обойтись. На самом деле, речь идет прежде всего о парах воды, которые содержатся в нашей атмосфере.

Атмосферный воздух является смесью газов, одним из которых и является водяной пар (рис. 1). Он вносит свой вклад в атмосферное давление, этот вклад называется парциальным давлением (а также упругостью) водяных паров.

Рис. 1. Составляющие атмосферного воздуха

Закон Дальтона

Основные закономерности, которые мы с вами получали в рамках изучения молекулярно-кинетической теории, относятся к так называемым чистым газам, т. е. газам, состоящим из атомов или молекул одного сорта. Однако очень часто приходится иметь дело со смесью газов. Самым простым и распространенным примером такой смеси является атмосферный воздух, который окружает нас. Как мы знаем, он на 78 % состоит из азота, на 21 % с лишним - из кислорода, а оставшийся процент занимают водяные пары и другие газы.

Рис. 2. Состав атмосферного воздуха

Каждый из газов, который входит в состав воздуха или любой другой смеси газов, безусловно, вносит свой вклад в общее давление данной смеси газов. Вклад каждого отдельного такого компонента носит название парциальное давление газа ,т. е. то давление, которое оказывал бы данный газ в отсутствии других компонент смеси.

Английский химик Джон Дальтон экспериментальным путем установил, что для разреженных газовых смесей общее давление есть простая сумма парциальных давлений всех компонент смеси:

Данное соотношение носит название закона Дальтона.

Доказательство закона Дальтона в рамках молекулярно-кинетической теории хотя и не особо сложное, однако достаточно громоздкое, поэтому приводить здесь мы его не будем. Качественно же объяснять этот закон достаточно просто, если учесть тот факт, что мы пренебрегаем взаимодействием между молекулами, т. е. молекулы представляют собой упругие шары, которые могут только сталкиваться друг с другом и со стенками сосуда. На практике модель идеального газа хорошо работает лишь для достаточно разреженных систем. В случае же плотных газов будут наблюдаться отклонения от выполнения закона Дальтона.

Парциальное давление p водяных паров является одним из показателей влажности воздуха, который измеряется в паскалях или миллиметрах ртутного столба.

Давление водяного пара зависит от концентрации его молекул в воздухе, а также от абсолютной температуры последнего. Чаще за характеристику влажности принимают плотность ρ водяного пара, содержащегося в воздухе, она называется абсолютной влажностью.

Абсолютная влажность показывает, сколько граммов водяного пара содержится в воздуха. Соответственно, единица измерения абсолютной влажности - .

Оба упомянутых показателя влажности связаны уравнением Менделеева-Клапейрона:

- молярная масса водяного пара;

- его абсолютная температура.

То есть, зная один из показателей, например плотность, мы можем легко определить другой, то есть давление.

Мы с вами знаем, что водяной пар может быть как ненасыщенным, так и насыщенным. Пар, находящийся в термодинамическом равновесии с жидкостью того же состава, называется насыщенным. Ненасыщенный пар - пар, не достигший динамического равновесия со своей жидкостью. В этом случае равновесие между процессами конденсации и испарения отсутствуют.

В целом водяной пар в атмосфере, несмотря на наличие большого количества водоемов: океанов, морей, рек, озер и так далее - является ненасыщенным, ведь наша атмосфера не закрытый сосуд. Однако перемещение воздушных масс: ветра, ураганы и так далее - приводят к тому, что в разных точках Земли в каждый момент времени наблюдается разное соотношение между скоростями конденсации и испарением воды, вследствие чего в отдельных местах пар может достигать насыщения. К чему это приводит? К тому, что в такой местности пар начинает конденсироваться, ведь мы помним, что насыщенный пар всегда контактирует со своей жидкостью. Как результат, может образоваться туман или облака, выпасть роса. Температура, при которой пар становится насыщенным, называется точкой росы. Давление водяного пара (насыщенного) в точке росы обозначим .

Подумайте, почему роса, как правило, выпадает ранним утром? Что в этот момент суток происходит с температурой, а следовательно, и с предельным давлением, с давлением насыщенного пара? Очевидно, что знание абсолютной влажности или парциального давления водяного пара не дает нам никакого представления о том, насколько близок или далек данный пар от насыщения. А ведь именно от этой удаленности или близости к насыщению и зависит скорость процессов испарения и конденсации, т. е. тех процессов, которые и обуславливают жизнедеятельность живых организмов.

Если испарение превалирует над конденсацией, то организмы и почва теряют влагу (рис. 3). Если превалирует конденсация, то становятся невозможными процессы сушки (рис. 4).Перед нами стоит необходимость усовершенствовать понятие влажности; понятие абсолютной влажности, как мы только что убедились, не полностью описывает все необходимые нам явления.

Рис. 3. Испарение превалирует над конденсацией

Рис. 4. Конденсация превалирует над испарением

Еще раз обсудим проблематику. Сделаем это на простом примере. Представьте себе, что в некотором транспортном средстве находится 20 человек. Много это или мало, т. е. вот эта абсолютная величина 20 человек? Естественно, что мы не сможем сказать, много это или мало, до тех пор пока не будем знать максимальную вместимость данного автомобиля или транспортного средства. 20 человек в легковой машине - это, естественно, много, это фактически невозможно, а 20 человек в большом автобусе не так уж и много. Аналогично и в случае с абсолютной влажностью, т. е. с парциальным давлением водяного пара, нам необходимо его с чем-то сравнивать. С чем же сравнивать это парциальное давление? Ответ нам подсказывает прошлый урок. Какое важное, особое значение есть у давления водяного пара? Это давление насыщенного водяного пара. Если мы будем сравнивать парциальное давление водяного пара при данной температуре с давлением насыщенного водяного пара при этой же температуре, мы сможем точнее охарактеризовать ту самую влажность воздуха. Чтобы охарактеризовать удаленность состояния пара от насыщения, ввели специальную величину, называемую относительной влажностью .

Относительной влажностью воздуха называют выраженное в процентах отношение давления водяного пара, содержащегося в воздухе, к давлению насыщенного пара при той же температуре:

Теперь ясно, что чем меньше относительная влажность, тем дальше тот или иной пар от насыщения. Так, например, если значение относительной влажности равно 0, то фактически водяного пара в воздухе нет. Т. е. у нас невозможна конденсация, а при значении относительной влажности 100 % весь водяной пар, который находится в воздухе, является насыщенным, т. к. его давление равно как раз давлению насыщенного водяного пара при данной температуре. Вот таким вот способом мы теперь точно определили, что же такое та самая влажность, значение которой нам каждый раз сообщают в прогнозах погоды.

Воспользовавшись уравнением Менделеева-Клапейрона, мы можем получить для относительной влажности альтернативную формулу, в которую входит теперь значение плотности водяного пара, содержащегося в воздухе, и плотность насыщенного пара при той же температуре.

Давление и плотность пара;

Давление и плотность насыщенного пара при данной температуре ;

Универсальная газовая постоянная.

Формула относительной влажности:

Плотность водяного пара, содержащегося в воздухе;

Плотность насыщенного пара при той же температуре.

Влияние интенсивности испарения и конденсации воды на живые организмы

Люди очень восприимчивы к значению относительной влажности, от нее зависит интенсивность испарения влаги с поверхности кожи. При высокой влажности, особенно в жаркий день, это испарение уменьшается, вследствие чего нарушается нормальный теплообмен организма с окружающей средой. В сухом воздухе, наоборот, происходит быстрое испарение влаги с поверхности кожи, от чего высыхают, например, слизистые оболочки дыхательных путей. Наиболее благоприятной для человека является относительная влажность в интервале 40-60 %.

Важна также роль водяного пара в формировании погодных условий. Конденсация водяного пара приводит к образованию облаков и последующему выпадению осадков, что, безусловно, имеет значение для любых аспектов нашей жизни и для народного хозяйства. Во многих производственных процессах поддерживаются искусственные режимы влажности. Примером таких процессов являются ткацкие, кондитерские, фармацевтические цеха и многие другие. В библиотеках и музеях для сохранения книг и экспонатов также важно поддерживать определенное значение относительной влажности, поэтому в таких учреждениях во всех помещениях обязательно на стене висит психрометр - прибор для измерения относительной влажности.

Для расчета относительной влажности, как мы только что убедились, нам необходимо знать значение давления или плотности насыщенного пара при данной температуре.

На прошлом уроке, изучая насыщенный пар, мы говорили об этой зависимости, однако ее аналитический вид весьма сложен, наших математических знаний еще не достаточно. Как же быть в этом случае? Выход очень прост: вместо записи этих формул в аналитическом виде, мы будем пользоваться таблицами значения давления и плотности насыщенного пара при данной температуре (табл. 1). Эти таблицы есть как в учебниках, так и в любом справочнике технических величин.

Табл. 1. Зависимость давления и плотности насыщенного водяного пара от температуры

Теперь рассмотрим изменение относительной влажности с температурой. Чем выше температура, тем меньше относительная влажность. Почему и как, рассмотрим на примере задачи.

Задача

В некотором сосуде пар становится насыщенным при . Какова будет его относительная влажность при , , ?

Поскольку речь идет о паре в сосуде, то объем пара остается неизменным при изменении температуры. Кроме этого, нам необходима таблица зависимости давления и плотности насыщенного пара от температуры (табл. 2).

Табл. 2. Зависимости давления и плотности насыщенного пара от температуры

Решение:

Из текста вопроса ясно, что при , , ведь именно при этом значении пар становится насыщенным, т. е. из определения относительной влажности мы имеем:

В числителе стоит плотность имеющегося в сосуде водяного пара, а в знаменателе находится плотность отсутствующего в сосуде насыщенного пара при той же температуре. Что будет происходить с величиной влажности при увеличении температуры? Числитель, с учетом замкнутости сосуда, изменяться не будет. Действительно, поскольку не происходит конденсации и нет обмена веществом с внешним миром, то масса пара, а вместе с ней и его плотность, сохранят свои значения. А знаменатель, как мы знаем из прошлого урока, растет с температурой, поэтому относительная влажность будет уменьшаться. Плотность пара в сосуде при можно вычислить из приведенной формулы:

Эту же плотность пар будет иметь и при всех остальных температурах. Следовательно, для вычисления влажности нам будет достаточно знать значение плотности насыщенного пара при всех заданных температурах, и мы сразу можем получить ответы. Значение плотности насыщенного пара возьмем из таблицы. Подставляя поочередно значения в формулу для влажности, получим такие ответы:

Ответ:

Пример решения типичной задачи на определение относительной влажности

При решении таких задач важно знать, что давление насыщенного пара зависит от температуры, но не зависит от объема.

Условие задачи:

В сосуде находится воздух, относительная влажность которого при температуре равна . Какой будет относительная влажность после уменьшения объема сосуда в n раз (n = 3) и нагревания газа до температуры ? Плотность насыщенных водяных паров при температуре равна .

Ход решения:

Из определения относительной влажности мы можем записать, что при температуре абсолютная влажность, до сжатия, равна:

А после сжатия:

То есть при уменьшении объема в раз при постоянной массе плотность увеличивается в раз.

После сжатия масса влаги, приходящаяся на единицу объема сосуда, не только в виде паров, но и в виде сконденсировавшееся жидкости, если возникли условия для конденсации, будет равна:

При температуре давление насыщенных водяных паров равно нормальному атмосферному давлению, мы об этом говорили на прошлом уроке, и составляет:

А их плотность, если воспользоваться уравнением Менделеева-Клапейрона, может быть рассчитана по формуле:

Где , т. к. в сосуде будет ненасыщенный пар с относительной влажностью:

Выражая эту влажность в процентах, мы получим значение 2,9 %.

Ответ: .

А теперь поговорим не только о том, что такое влажность, но и о том, как эту самую влажность можно измерять. Наиболее распространенным инструментом для таких измерений служит так называемый гигрометрический психрометр, который представлен на рис. 5.

Рис. 5. Гигрометрический психрометр

На стойке закреплены два термометра с одинаковыми шкалами. Ртутный резервуар одного из них обвернут во влажную тряпочку (рис. 8).

Рис. 6. Термометры гигрометрического психрометра

Вода с этой тряпочки испаряется, благодаря чему сам термометр охлаждается, соответственно, термометры носят название сухой и влажный (рис. 7).

Рис. 7. Сухой и влажный термометры гигрометрического психрометра

Чем больше относительная влажность окружающего воздуха, тем менее интенсивно, слабее идет испарение воды с влажной тряпочки, тем меньше разность в показаниях сухого и влажного термометров. Т. е. при ϕ = 100 % вода не будет испаряться, т. к. весь водяной пар является насыщенным, и показания обоих термометров будут совпадать. При разность показаний термометров будет максимальной. Таким образом, по разности показаний термометров с помощью специальных психометрических таблиц (чаще всего такая таблица сразу размещена на корпусе самого прибора) и определяют значение относительной влажности.

Как мы знаем, большая часть поверхности нашей планеты покрыта Мировым океаном, поэтому вода и все процессы, происходящие с ней, в частности испарение и конденсация, играют важнейшую роль во всех процессах нашей жизнедеятельности. Мы сами дали строгое определение понятий «абсолютная влажность» и «относительная влажность». Фактически это физическая величина, относительная влажность показывает, на сколько атмосферный пар отличается от насыщенного.

Список литературы

  1. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  2. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  1. Интернет-портал WorldOfSchool.ru ()
  2. Интернет-портал «Физика. Старые учебники» ()

Домашнее задание

  1. Чем отличаются абсолютная влажность и относительная влажность?
  2. Что можно измерить с помощью гигрометра психрометрического и каков его принцип действия?
  3. Из каких парциальных давлений складывается атмосферное давление?

Что такое пар и каковы его основные свойства.
Можно ли считать воздух газом?
Применимы ли законы идеального газа для воздуха?

Вода занимает около 70,8% поверхности земного шара. Живые организмы содержат от 50 до 99,7% воды. Образно говоря, живые организмы - это одушевлённая вода. В атмосфере находится около 13-15 тыс. км3 воды в виде капель, кристаллов снега и водяного пара. Атмосферный водяной пар влияет на погоду и климат Земли.


Водяной пар в атмосфере.


Водяной пар в воздухе, несмотря на огромные поверхности океанов, морей, озёр и рек, далеко не всегда является насыщенным. Перемещение воздушных масс приводит к тому, что в одних местах нашей планеты в данный момент испарение воды преобладает над конденсацией, а в других, наоборот, преобладает конденсация. Но в воздухе практически всегда имеется некоторое количество водяного пара.

Плотность водяного пара в воздухе называется абсолютной влажностью .

Абсолютная влажность выражается, следовательно, в килограммах на метр кубический (кг/м 3).


Парциальное давление водяного пара


Атмосферный воздух представляет собой смесь различных газов и водяного пара. Каждый из газов вносит свой вклад в суммарное давление, производимое воздухом на находящиеся в нём тела.

Давление, которое производил бы водяной пар, если бы все остальные газы отсутствовали, называют парциальным давлением водяного пара .

Парциальное давление водяного пара принимают за один из показателей влажности воздуха. Его выражают в единицах давления - паскалях или миллиметрах ртутного столба.

Так как воздух представляет собой смесь газов, то атмосферное давление определяется суммой парциальных давлений всех компонент сухого воздуха (кислорода, азота, углекислого газа и т. д.) и водяного пара.

Относительная влажность.


По парциальному давлению водяного пара и абсолютной влажности ещё нельзя судить о том, насколько водяной пар в данных условиях близок к насыщению. А именно от этого зависит интенсивность испарения воды и потеря влаги живыми организмами. Вот почему вводят величину, показывающую, насколько водяной пар при данной температуре близок к насыщению, - относительную влажность .

Относительной влажностью воздуха называют отношение парциального давления р водяного пара, содержащегося в воздухе при данной температуре, к давлению р н. п насыщенного пара при той же температуре, выраженное в процентах:

Относительная влажность воздуха обычно меньше 100 %.

При понижении температуры парциальное давление паров воды в воздухе может стать равным давлению насыщенного пара. Пар начинает конденсироваться, и выпадает роса.

Температура, при которой водяной пар становится насыщенным, называется точкой росы .

По точке росы можно определить относительную влажность воздуха.


Психрометр.


Влажность воздуха измеряют с помощью специальных приборов. Мы расскажем об одном из них - психрометре .

Психрометр состоит из двух термометров (рис. 11.4). Резервуар одного из них остаётся сухим, и он показывает температуру воздуха. Резервуар другого окружён полоской ткани, конец которой опущен в воду. Вода испаряется, и благодаря этому термометр охлаждается. Чем больше относительная влажность, тем менее интенсивно идёт испарение и температура, показываемая термометром, окружённым влажной тканью, ближе к температуре, показываемой сухим термометром.

При относительной влажности, равной 100%, вода вообще не будет испаряться и показания обоих термометров будут одинаковы. По разности температур этих термометров с помощью специальных таблиц можно определить влажность воздуха.


Значение влажности.


От влажности зависит интенсивность испарения влаги с поверхности кожи человека. А испарение влаги имеет большое значение для поддержания температуры тела постоянной. В космических кораблях поддерживается наиболее благоприятная для человека относительная влажность воздуха (40-60%).

Как вы думаете, при каких условиях выпадает роса? Почему перед дождливым днём вечером на траве нет росы?

Очень важно знать влажность в метеорологии - в связи с предсказанием погоды. Хотя относительное количество водяного пара в атмосфере сравнительно невелико (около 1 %), роль его в атмосферных явлениях значительна. Конденсация водяного пара приводит к образованию облаков и последующему выпадению осадков. При этом выделяется большое количество теплоты. И наоборот, испарение воды сопровождается поглощением теплоты.

В ткацком, кондитерском и других производствах для нормального течения процесса необходима определённая влажность.

Очень важно соблюдение режима влажности на производстве при изготовлении электронных схем и приборов, в нанотехнологии.

Хранение произведений искусства и книг требует поддержания влажности воздуха на необходимом уровне. При большой влажности холсты на стенах могут провиснуть, что приведёт к повреждению красочного слоя. Поэтому в музеях на стенах вы можете видеть психрометры.

Влажность воздуха – это содержание парообразной воды в атмосфере. Эта характеристика во многом определяет самочувствие многих живых существ, а также влияет на погоду и климатические условия на нашей планете. Для нормальной работы человеческого организма она должна находиться в определённом диапазоне, вне независимости от температуры воздуха. Известны две основных характеристики влажности воздуха – абсолютная и относительная:

  • Абсолютная влажность – это масса водяного пара, содержащаяся в одном кубическом метре воздуха. Единица измерения абсолютной влажности - г/м3. Относительная влажность определяется как отношение текущего и максимального значения абсолютной влажности при определенной температуре воздуха.
  • Относительную влажность принято измерять в %. По мере увеличения температуры абсолютная влажность воздуха также растет от 0,3 при -30°С до 600 при +100°С. Величина относительной влажности зависит в основном от климатических зон Земли (средние, экваториальные или полярные широты) и сезона года (осень, зима, весна, лето).

Существуют вспомогательные термины для определения влажности. Например, влагосодержание (г/кг), т.е. вес водяных паров на один килограмм воздуха. Или температура «точки росы», когда воздух считается полностью насыщенным, т.е. его относительная влажность равна 100%. В природе и холодильной технике это явление можно наблюдать на поверхностях тел, температура которых меньше температуры точки росы в виде капель воды (конденсата), изморози или инея.

Энтальпия

Также существует такое понятие, как энтальпия. Энтальпия - это свойство тела (вещества), определяющее количество энергии, сохраненной в его молекулярной структуре, которая доступна для преобразования в теплоту при определённой температуре и давлении. Но не всю энергию можно преобразовать в теплоту, т.к. часть внутренней энергии тела остается в веществе для поддержания его молекулярной структуры.

Расчет влажности

Для расчета значений влажности применяют несложные формулы. Так, абсолютную влажность принято обозначать p и определять как


p = m вод. пара / V воздуха

где m вод. пара – масса водяного пара (г)
V воздуха - объем воздуха (м 3), в котором он содержится.

Общепринятое обозначение относительной влажности - φ. Относительную влажность рассчитывают по формуле:


φ = (p/p н) * 100%


где p и p н – текущее и максимальное значение абсолютной влажности. Наиболее часто применяется величина относительной влажности, так как на состояние человеческого организма в большей степени влияет не вес влаги в объеме воздуха (абсолютная влажность), а именно относительное содержание воды.

Влажность весьма важна для нормальной жизнедеятельности практически всех живых существ и, в особенности - человека. Ее величина (по опытным данным) должна находиться в пределах от 30 до 65%, вне зависимости от температуры. Например, низкая влажность зимой (по причине малого количества воды в воздухе) приводит к пересыханию у человека всех слизистых оболочек, тем самым увеличивается риск простудных заболеваний. Высокая влажность наоборот, ухудшает процессы терморегуляции и потоотделения через кожные покровы. При этом появляется ощущение духоты. Кроме того, поддержание влажности воздуха является важнейшим фактором:

  • для проведения многих технологических процессов на производстве;
  • эксплуатации механизмов и устройств;
  • сохранности от разрушения строительных конструкций зданий, элементов интерьера из древесины (мебели, паркета и т.п.), археологических и музейных артефактов.

Расчет энтальпии

Энтальпия это потенциальная энергия, которая содержится в одном килограмме влажного воздуха. Причем при равновесном состоянии газа она не поглощается и не излучается во внешнюю среду. Энтальпия влажного воздуха равна сумме энтальпий составляющих его частей: абсолютно сухого воздуха, а также паров воды. Ее величину рассчитывают по следующей формуле:


I = t + 0,001(2500 +1,93t)d


Где t – температура воздуха (°С), а d – его влагосодержание (г/кг). Энтальпия (кДж/кг) является удельной величиной.

Температура по мокрому термометру

Температура по мокрому термометру – это такое ее значение, при котором идет процесс адиабатного (энтальпия постоянна) насыщения воздуха парами воды. Для определения ее конкретного значения используют I – d диаграмму. Вначале на нее наносят точку, соответствующую заданному состоянию воздуха. Затем через эту точку проводят луч адиабаты, пересекая его с линией насыщения (φ = 100%). А уже из точки их пересечения опускают проекцию в виде отрезка с постоянной температурой (изотерма) и получают температуру мокрого термометра.

I-d диаграмма является основным инструментом для расчетов/построений разных процессов, связанных с изменением состояния воздуха – нагрева, охлаждения, осушения и увлажнения. Ее появление значительно облегчило понимание процессов, происходящих в системах и агрегатах для сжатия воздуха, вентиляции и кондиционирования. Эта диаграмма графически показывает полную взаимозависимость основных параметров (температуры, относительной влажности, влагосодержания, энтальпии и парциального давления паров воды), определяющих тепло-влажностный баланс. Все значения указаны при определенном значении атмосферного давления. Обычно это 98 кПа.

Диаграмма выполнена в системе косоугольных координат, т.е. угол между ее осями составляет 135°. Это способствует увеличению зоны ненасыщенного влажного воздуха (φ = 5 – 99%) и сильно облегчает графическое нанесение происходящих с воздухом процессов. На диаграмме представлены следующие линии:

  • криволинейные - влажности (от 5 до 100%).
  • прямые - постоянной энтальпии, температуры, парциального давления и влагосодержания.

Ниже кривой φ = 100% воздух полностью насыщен влагой, находящейся в нем в виде жидкости (вода) или твердом (иней, снег, лед) состоянии. Определить состояние воздуха во всех точках диаграммы можно, зная любые два его параметра (из четырех возможных). Графическое построение процесса изменения состояния воздуха значительно облегчается с помощью дополнительно нанесенной круговой диаграммы. На ней под разными углами показаны значения тепло-влажностного отношения ε. Эта величина определяется наклоном луча процесса и рассчитывается как:

где Q – теплота (кДж/кг) и W - влага (кг/ч), поглощаемые или выделяемые из воздуха. Значение ε делит всю диаграмму на четыре сектора:

  • ε = +∞ … 0 (нагрев + увлажнение).
  • ε = 0 … -∞ (охлаждение + увлажнение).
  • ε = -∞ … 0 (охлаждение + осушение).
  • ε = 0 … +∞ (нагрев + осушение).

Измерение влажности

Измерительные приборы для определения значений относительной влажности называются гигрометрами. Для замера величины влажности воздуха используют несколько основных методов. Рассмотрим три из них.

  1. Для сравнительно неточных замеров в быту применяют волосяные гигрометры. В них чувствительным элементом является конский или человеческий волос, который в натянутом состоянии установлен в стальную рамку. Оказалось, что этот волос в обезжиренном виде способен чутко реагировать на малейшие изменения относительной влажности воздуха, изменяя свою длину. По мере увеличения влажности волос удлиняется, при уменьшении – наоборот, укорачивается. Стальная рамка, на которой закреплен волос, связана со стрелкой прибора. Стрелка воспринимает от рамки изменение размера волоска и вращается вокруг своей оси. При этом она указывает на градуированной шкале (в %) относительную влажность.
  2. При более точных теплотехнических измерениях во время научных исследований применяют гигрометры конденсационного типа и психрометры. Они осуществляют косвенный замер относительной влажности. Гигрометр конденсационного типа изготовлен в виде закрытой цилиндрической емкости. Одна из ее плоских крышек отполирована до состояния зеркала. Внутрь емкости устанавливают термометр и наливают какую-нибудь легкокипящую жидкость, например эфир. Затем ручным резиновым диафрагменным насосом в емкость закачивается воздух, который начинает там интенсивно циркулировать. Из-за этого эфир вскипает, понижает температуру (охлаждает) поверхность емкости и ее зеркало соответственно. На зеркале появятся капли воды, сконденсированной из воздуха. В этот момент времени необходимо зафиксировать показания термометра, который покажет температуру «точки росы». Потом с помощью специальной таблицы определяют соответственную плотность насыщенного пара. А по ним уже и величину относительной влажности.
  3. Психрометрический гигрометр это пара термометров, установленных на основание с общей шкалой. Один из них называют сухим, он измеряет действительную температуру воздуха. Второй называют – мокрым. Температура мокрого термометра – это температура, которую принимает влажный воздух при достижении насыщенного состояния и сохранении постоянной энтальпии воздуха, равной начальной, т. е. это предельная температура адиабатического охлаждения. У мокрого термометра шарик оборачивают тканью из батиста, которую погружают в емкость с водой. На ткани происходит испарение воды, что ведет к понижению температуры воздуха. Этот процесс охлаждения идет до момента, когда воздух вокруг шарика не станет полностью насыщенным (т.е. с относительной влажностью 100%). Этот термометр покажет «точку росы». На шкале прибора имеется и т.н. психрометрическая таблица. С ее помощью по данным сухого термометра и разности температур (сухой минус мокрый) определяют текущее значение относительной влажности.

Регулирование влажности

Для повышения влажности (увлажнения воздуха) применяют увлажнители. Увлажнители отличаются большим разнообразием, которое определяется способом увлажнения и дизайном. По способу увлажнения увлажнители делятся на: адиабатические (форсуночные) и паровые. В паровых увлажнителях водяной пар образуется при нагреве воды на электродах. Как правило, в быту наиболее часто используются паровые увлажнители. В системах вентиляции и центрального кондиционирования применяются увлажнители как парового, так и форсуночного типа. В промышленных вентиляционных системах увлажнители могут размещаться как непосредственно в самих вентиляционных установках, так и в виде отдельной секции в вентиляционном канале.

Наиболее эффективный метод удаления влаги из воздуха реализуется при помощи на базе компрессорных холодильных машин. Они осушают воздух путем конденсации водяных паров на охлажденной поверхности теплообменника испарителя. Причем его температура должна быть ниже «точки росы». Собранная таким способом влага самотеком или с помощью насоса удаляется наружу по дренажной трубе. Существуют различных типов и назначений. По типам осушители делятся на моноблочные и с выносным конденсатором. По назначению осушители делятся на:

  • бытовые мобильные;
  • профессиональные;
  • стационарные для бассейнов.

Основная задача систем осушения – обеспечивать благоприятное самочувствие находящихся внутри людей и безопасную эксплуатацию конструктивных элементов зданий. Особенно важно поддерживать уровень влажности в помещениях с повышенным выделением влаги, таких как бассейны, аквапарки, банные и SPA-комплексы. Воздух в бассейне имеет повышенную влажность из-за интенсивных процессов испарения воды с поверхности чаши. Поэтому избыток влаги - определяющий фактор при . Избыток влаги, а также наличие в воздухе агрессивных сред, как например, соединения хлора оказывают разрушительное воздействия на элементы строительных конструкций и отделку в помещении. Влага конденсируется на них, вызывая появление плесневых грибков или коррозионное разрушение металлических элементов.

По этим причинам рекомендуемая величина относительной влажности воздуха внутри бассейна должна поддерживаться в диапазоне 50 – 60%. Строительные консьтрукции, в частности стены и остекленные поверхности помещения бассейна следует дополнительно защитить от выпадения влаги на них. Это можно реализовать путем подачи на них потока приточного воздуха, причем обязательно в направлении снизу-вверх. Снаружи здание должно иметь слой высокоэффективной тепловой изоляции. Для достижения дополнительных преимуществ настоятельно рекомендуем применять разнообразные осушители воздуха, но только лишь в комбинации с оптимально рассчитанными и подобранными