Уравнение больцмана термодинамическая шкала температур. Абсолютная термодинамическая температура. Сравнение температурных шкал

Теорема Нернста – третье начало термодинамики

Температура относится к интенсивным термодинамическим параметрам состояния тел. Определение ее осуществляется через экстенсивные свойства тел, например через изменение объема жидкости в бытовом термометре. Для таких термометров могут быть приняты различные равномерные температурные шкалы, в которых могут быть приняты одинаковыми значения температур только в двух опорных точках. При всех других значениях температур различные термометры будут давать различные показания.

Например, возьмем два жидкостных термометра с различными свойствами жидкостей в них (рис.8.12). В цилиндрических столбиках этих термометров можно добиться одинакового уровня при температуре t 0 путем их наполнения при данной температуре, при этом можно подобрать диаметры цилиндров таким образом, чтобы при температуре t 1 их уровни тоже были одинаковыми. Однако в этих цилиндрах при температурах, отличных от t 0 и t 1 , уровни жидкостей совпадать не будут, из-за различных изменений объемов жидкостей с различными термодинамическими свойствами.

Зависимость единиц измерения температуры от свойств вещества, используемого в термометре, объясняет наличие многообразия температурных шкал: Цельсия, Реомюра, Фаренгейта и т.д. Все это затрудняет использование их показаний для выполнения расчетов и сопоставления термодинамических параметров различных веществ.

Теорема Карно позволила обосновать абсолютную термодинамическую шкалу температур, которая не зависит от свойств веществ.

Принцип построения такой шкалы основан на создании последовательной цепочки циклов Карно, каждый из которых использует теплоту q 2 предыдущего цикла как теплоту q 1 для последующего цикла (рис.8.13). Например, в цикле 1234 совершается работа l t , а его отведенная теплота q 2 используется в виде подведенной теплоты q 1 в цикле 4356 и т.д. Приняв работу всех циклов одинаковой (l t =const), получим равенство температурных интервалов, в котором реализуется каждый цикл (DT=const), поскольку все они осуществляются в одинаковых диапазонах изменения энтропии (Ds=const):

Получается, что это изменение температуры пропорционально работе цикла Карно.

Построенная на таком принципе температурная шкала будет абсолютной, т.е. не зависящей от свойств вещества, поскольку показатели экономичности цикла Карно не зависят от свойств рабочего тела. В таком термометре, используя любое вещество, совершив одинаковую работу, получим одинаковое изменение его температуры.

В международной системе единиц (СИ) в качестве единицы абсолютной – термодинамической шкалы температур – принят кельвин (название в честь Томсона лорда Кельвина, обосновавшего в 1848 г. абсолютную термодинамическую шкалу температур).

Кельвин – единица измерения температуры по термодинамической шкале, для которой тройной точке воды соответствует значение 273,16 К. Это число выбрано исходя из того, чтобы один градус Цельсия равнялся одному градусу Кельвина. Температура таяния льда при нормальном давлении на 0,01º ниже температуры тройной точки воды, следовательно, 0 ºС соответствует 273,15 К.

Однако практически реализовать обратимый цикл Карно невозможно, поэтому для измерения абсолютной температуры используют газовые термометры, в которых газ находится при низком давлении и подчиняется уравнению Клапейрона – Менделеева: Pv=RT. При постоянном объеме газа в этих термометрах абсолютная температура пропорциональна давлению, что позволяет измерить абсолютную температуру газа через его давление: T=Pv/R.

При значении температуры холодного источника 0 К для обратимого цикла Карно КПД равен единице. В этом случае вся подведенная теплота горячего источника должна превратиться в работу. В случае температуры холодного источника меньше 0 К в цикле Карно оказалось бы получено больше работы, чем подведено теплоты, что противоречит первому закону термодинамики. Таким образом, был сделан вывод о невозможном существовании тел с температурой меньше 0 К.

Вопрос о возможности существования тел с температурой равной 0 К относится к началу ХХ века. Занимаясь теоретическими и экспериментальными исследованиями в области очень низких температур, близких к 0 К, В.Нернст обнаружил, что при приближении к температуре 0 К теплоемкости всех веществ стремятся к нулю. Используя исследования Нернста, М.Планк показал, что вблизи абсолютного нуля все процессы должны протекать без изменения энтропии. На основании этого анализа Планк высказал предположение, что при температуре, равной 0 К для всех веществ, находящихся в равновесном состоянии, энтропия обращается в нуль. Эти утверждения Нернста и Планка составляют содержание третьего начала термодинамики.

Пользуясь третьим началом термодинамики, можно доказать, что абсолютный нуль температуры недостижим. На этом основании третий закон термодинамики может быть сформулирован в следующем виде: никаким способом невозможно охладить тело до температуры абсолютного нуля, т.е. абсолютный нуль температуры недостижим. Формулировку третьего начала термодинамики, близкую к этой, дал Нернст, поэтому она и получила название теоремы Нернста.



Утверждение о недостижимости абсолютного нуля температуры не связано со вторым законом термодинамики. Из этого утверждения лишь следует, что КПД цикла Карно всегда меньше единицы.

1. В 1848 г. Вильям Томсон (лорд Кельвин) указал, что теоремой Карно можно воспользоваться для построения рациональной температурной шкалы, не зависящей от индивидуальных особенностей термометрического вещества и устройства термометра.

Из теоремы Карно следует, что к. п. д. цикла Карно может зависеть только от температур нагревателя и холодильника. Обозначим буквами t 1 и t 2 эмпирические температуры нагревателя и холодильника, измеренные каким-либо термометром Тогда

Q1 − Q2

F (t 1, t 2 )

где f (t1 , t2 ) - универсальная функция выбранных эмпирических температур t1 и t2 . Ее вид не зависит от устройства машины Карно и от рода используемого рабочего вещества.

Чтобы построить термодинамическую шкалу температур, введем более простую универсальную функцию

=ϕ(t 1, t 2 )

очевидно, что эти фунцкции связаны

f (t1, t2 )=

Q1 − Q2

−1 =ϕ(t 1, t 2 )−1

Определим вид этой функции ϕ(t 1, t 2 )

Для этого рассмотрим 3 цикла Карно. Т.е. имеется 3 тепловых резервуара, поддерживаемых при постоянных температурах

Д ля циклов Карно 1234 и 4356 можно написать

Q 1 =ϕ(t 1, t 2 )

Q 2 =ϕ(t 2, t 3 )

Исключив отсюда тепло Q2, получим

Q 1 =ϕ(t 1, t 2 )ϕ(t 2, t 3 )

С другой стороны для цикла 1256

Q 1 =ϕ(t 1, t 3 )

ϕ(t 1, t 3 )=ϕ(t 1, t 2 )ϕ(t 2, t 3)

ϕ(t 1, t 2 )=

ϕ(t 1, t 3)

ϕ(t 2, t 3)

Это соотношение не должно зависеть от t3 . т. к. в этот цикл не входит 3-й резервуар, температура, которого может быть произвольной. Следовательно функция должна иметь вид:

ϕ(t 1, t k )=Θ(t 1 )Θ(t k )

Θ(t 1 )

Θ(t 2 )

Так как величина

Θ(t ) зависит только от температуры, то она сама может быть

принята за меру температуры тела.

Величину Θ и называют абсолютной термодинамической температурой.

своего знака, т.е. абсолютная термодинамическая температура не может принимать отрицательных значений.

Предположим, что существует тело, абсолютная температура которого отрицательна. Используем его в качестве холодильника в тепловой машине Карно. В качестве нагревателя возьмем другое тело, абсолютная температура которого положительна. В этом случае получим противоречие со вторым законом термодинамики. (без доказательства)

Самая низкая температура, допускаемая постулатом второго начала термодинамики, есть 0. Эта температура называется абсолютным нулем температур.

Второе начало термодинамики не может ответить на вопрос, достижим или не достижим абсолютный нуль температур. Оно позволяет лишь утверждать, что

охладить тело ниже абсолютного нуля невозможно.

Достижимость абсолютного нуля решается в рамках 3-его закона термодинамики.

2.4.Тождественность термодинамической шкалы температур со шкалой идеально-газового термометра

о существим цикл Карно, взяв в качестве рабочего тела идеальный газ. Для простоты будем предполагать, что количество газа равно одному молю.

1-2 Изотермический процесс

По первому началу δ Q = dU + PdV . Так как U=U(T), dU=0

δ Q = PdV , PV=RT

Интегрируя это выражение, находим

Q1 = RT 1 ln (V 1 / V 2 )

Аналогично

3-4 Изотермический процесс

Q2 = RT 2 ln (V 3 / V 4 )

T 1 ln (V 1 / V 2 )

ln (V 3 / V 4 )

(2-3) (4-1) адиабатический процесс

TV γ − 1 = const

T 1 V γ 2− 1 = T 2 V γ 3− 1

T 1 V γ 1− 1 = T 2 V γ 4− 1

Молекулярная физика

поделим одно на другое

Это соотношение справедливо и для таких идеальных газов, у которых величина γ зависит от температуры.

Из этого соотношения следует, что абсолютная термодинамическая шкала температур станет тождественной с соответствующей температурной шкалой идеально-газового термометра, если в обоих случаях температуре основной реперной точки одно и то же значение.

Например, температуре таяния льда припишем 273.16K.

Используя формулу (1) можно получит выражение для КПД машины Карно, у которой в качестве рабочего вещества используется идеальный газ

Q1 − Q2

T 1 − T 2

2.5. Преобразование теплоты в механическую работу при изотермическом процессе. Вторая теорема Карно

Теплота - энергия, передаваемая от тела с более высокой температурой телу с меньшей температурой, например, при их контакте. Сама по себе такая передача энергии не сопровождается совершением работы, потому что при этом нет перемещения каких-либо тел. Она приводит лишь к увеличению внутренней энергии тела, которому теплота передается, и к выравниванию температур, после чего прекращается и сам процесс теплопередачи. Но если тепло передается телу, которое при этом может расширяться, то оно может совершить работу.

Согласно закону сохранения энергии

δQ =dU +δ A

Наибольшая "работа совершается при изотермическом процессе, когда внутренняя энергия не изменяется, так что

δQ =δ A

Большей работа, конечно, не может быть.

Следовательно, для получения максимальной работы, равной подведенной теплоте, нужно передавать теплоту расширяющемуся телу так, чтобы между ним и источником теплоты не было разности температур.

Правда, если между источником теплоты и телом, которому она передается, нет разности температур, то теплота и передаваться не будет!

На практике, чтобы теплота передавалась, достаточно и бесконечно малой разности температур, что почти не отличается от полной изотермичности. Процесс передачи теплоты идет при таких условиях бесконечно медленно и поэтому обратим. Т.о. цикл

Карно - это идеализированный цикл, при котором производится за цикл бесконечномалая работа и его можно считать обратимым, т. к. диссипативными процессами пренебрегаем.

Реальный процесс - диссипативный, т. к. часть тепла идет на увеличение внутренней энергии и работа в этом случае

δ A н =δQ −dU ≤δQ =δ A р

Т.о. необратимый процесс приводит к увеличению внутренней энергии тела в ущерб работе.

δ A н ≤δ A р

Отсюда следует вторая теорема Карно: Коэффициент полезного действия всякой тепловой машины не может превосходить коэффициент полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника.

η= Q1 − Q2 ≤ T 1 − T 2 (1)

Но если рассматривать наш процесс стойки зрения изменений, происходящих в самом рабочем теле, то Q1 и Q2 - это количество теплоты, полученное и соответственно отданное рабочим телом. Этим величинам Q1 и Q2 нужно, очевидно, приписать противоположные знаки. Будем считать полученное телом количество теплоты Q1 положительным; тогда Q2 отрицательно.

Следовательно, неравенство (1) перепишется в виде:

Q1 + Q2

T 1 − T 2

В случае обратимых процессов

Молекулярная физика

Q1 + Q2 = T 1 − T 2

1 +Q 2 =1 − T 2

А в случае необратимого (неравновесного) процесса

Эти соотношения можно обобщить следующим образом:

≤0

2 δ Q

1 δ Q

∫ 1 T 1

+ ∫ 2 T 2

≤0

δ T Q ≤ 0

Это соотношение называется неравенством Клаузиуса.

Термодинами́ческая Температу́рная шкала́ (Кельвина шкала), абсолютная шкала температур, не зависящая от свойств термометрического вещества (начало отсчета - абсолютный нуль температуры). Построение термодинамической температурной шкалы основано на втором начале термодинамики и, в частности, на независимости кпд Карно цикла от природы рабочего тела. Единица термодинамической температуры - кельвин (К)

Статистический вес и энтропия.

Энтропия - в естественных науках мера неупорядоченности системы, состоящей из многих элементов. В частности, в статистической физике - мера вероятности осуществления какого-либо макроскопического состояния.

Где - приращение энтропии; - минимальная теплота, подведённая системе; - абсолютная температура процесса.

Статистический вес в термодинамике и статистической физике - число способов, которыми может быть реализовано данное макроскопическое состояние системы. Статистический вес связан с энтропией S системы соотношением Больцмана ,

Где k = R/N = 1,38*10 -23 Дж/К

где k - фундаментальная мировая постоянная Больцмана;
R = 8,31 Дж/(моль*К) - молярная газовая постоянная;
N = 6,06*10 23 моль -1 - число Авогадро;
Р - статистический вес: число способов осуществления данного состояния.

Параметр S - энтропия - служит мерой рассеяния энергии Вселенной, а Р - характеризует любые самопроизвольные изменения, эта величина относится к миру атомов, определяющих скрытый механизм изменения.

Билет

Равновесное состояние. Диаграммы состояний. Уравнение состояния. Уравнение состояния разреженных газов. Идеальный газ. Уравнение состояния не разреженных газов (уравнение Ван-дер-Ваальса)

Равновесное состояние - состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия.



1)равновесие достигается в какой-либо части (или частях) относительно большой по размерам системы - локальное равновесие,

2)неполное равновесие достигается вследствие разности скоростей релаксационных процессов, протекающих в системе - частичное равновесие,

3)имеют место как локальное, так и частичное равновесие.

В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз.

Диаграммы состояний.

диаграмма равновесия, фазовая диаграмма, графическое изображение равновесных фазовых состояний одно- или многокомпонентных систем при разных значениях параметров, определяющих эти состояния. Диаграммы состояния изображают фазовый состав системы при разных концентрациях компонентов (Х), температурах (Т) и давлении (Р).

Диаграммы являются пространственными. Мерность пространства зависит от числа независимых переменных, функцией которых является фазовый состав. Диаграмма состояния может быть двумерной, трехмерной и многомерной. Переменные (Р, Т, Х) являются координатами, в которых строится диаграмма. Каждая точка диаграммы состояния (фигуративная точка) указывает на фазовый состав вещества при заданных значениях термодинамических параметров (координат этой точки). Когда система состоит только из одного компонента, диаграмма состояния представляет собой трехмерную пространственную фигуру, построенную в трех прямоугольных координатных осях, по которым откладывают температуру (Т), давление (Р) и мольный объем (v). На практике часто применяют проекцию диаграммы состояния на одну из координатных плоскостей, обычно на плоскость Р - Т.

Разреженные газы.

Разреженным в физике называют такое состояние газа, при котором средняя длина свободного пробега молекул превышает линейные размеры сосуда, содержащего газ. Это состояние называют также вакуумом. Поведение разреженных газов отличается целым рядом особенностей. Поскольку в вакууме молекулы газа пробегают расстояние от одной стенки до другой без столкновений, то не существует давления одной части газа на другую; можно говорить лишь о давлении газа на стенки сосуда. В разреженных газах не существует внутреннего трения и явления теплопроводности в обычном смысле. Физический вакуум при комнатных температурах реализуется в газах при давлении менее 10 -5 мм рт. ст., если газ находится в объеме с линейными размерами порядка метра.
В технике под вакуумом понимают состояние газа при давлении ниже атмосферного. Степень технического вакуума оценивается величиной давления остаточного газа.

Идеальный газ.

Идеальный газ - математическая модель газа, в которой предполагается, что:

1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией;

2) суммарный объём молекул газа пренебрежимо мал;

3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги;

4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.

Уравнение состояния идеального газа(уравнение Клайперона)

Уравнение состояния не разреженных газов (уравнение Ван-дер-Ваальса ) ,

Билет.

Механическая форма передачи энергии телу. Работа. Тепловая форма передачи энергии телу. Теплота. Первое начало термодинамики. Равновесно совершемая работа, равновесно подводимая теплота

(K) и отсчитывается по абсолютной термодинамической шкале (Кельвина). Абсолютная термодинамическая шкала является основной шкалой в физике и в уравнениях термодинамики.

Молекулярно-кинетическая теория, со своей стороны, связывает абсолютную температуру со средней кинетической энергией поступательного движения молекул идеального газа в условиях термодинамического равновесия:

\frac{1}{2} m\bar{v}^2 = \frac{3}{2}kT,

где m ─ масса молекулы, \bar{v} ─ средняя квадратичная скорость поступательного движения молекул , T ─ абсолютная температура, k ─ постоянная Больцмана .

История

Измерение температуры прошло долгий и трудный путь в своём развитии. Так как температура не может быть измерена непосредственно, то для её измерения использовали свойства термометрических тел, которые находились в функциональной зависимости от температуры. На этой основе были разработаны различные температурные шкалы, которые получили название эмпирических , а измеренная с их помощью температура называется эмпирической. Существенными недостатками эмпирических шкал являются отсутствие их непрерывности и несовпадение значений температур для разных термометрических тел: как между реперными точками, так и за их пределами. Отсутствие непрерывности эмпирических шкал связано с отсутствием в природе вещества, которое способно сохранять свои свойства во всём диапазоне возможных температур. В 1848 г. Томсон (лорд Кельвин) предложил выбрать градус температурной шкалы таким образом, чтобы в её пределах эффективность идеальной тепловой машины была одинаковой. В дальнейшем, в 1854 г. он предложил использовать обратную функцию Карно для построения термодинамической шкалы, не зависящей от свойств термометрических тел. Однако, практическая реализация этой идеи оказалась невозможной. В начале XIX века в поисках «абсолютного» прибора для измерения температуры снова вернулись к идее идеального газового термометра, основанного на законах идеальных газов Гей-Люссака и Шарля. Газовый термометр в течение долгого времени был единственным способом воспроизведения абсолютной температуры. Новые направления в воспроизведении абсолютной температурной шкалы основаны на использовании уравнения Стефана ─ Больцмана в бесконтактной термометрии и уравнения Гарри (Харри) Найквиста ─ в контактной.

Физические основы построения термодинамической шкалы температур.

1. Термодинамическая шкала температур принципиально может быть построена на основании теоремы Карно, которая утверждает, что коэффициент полезного действия идеального теплового двигателя не зависит от природы рабочего тела и конструкции двигателя, и зависит только от температур нагревателя и холодильника.

\eta=\frac{Q_1-Q_2} {Q_1}=\frac{T_1-T_2} {T_1},

где Q_1 – количество теплоты полученной рабочим телом (идеальным газом) от нагревателя, Q_2 – количество теплоты отданное рабочим телом холодильнику, T_1, T_2 – температуры нагревателя и холодильника, соответственно.

Из приведённого выше уравнения следует соотношение:

\frac{ Q_{1} }{ Q_{2} } = \frac{ T_{1} }{ T_{2} }

Это соотношение может быть использовано для построения абсолютной термодинамической температуры . Если один из изотермических процессов цикла Карно Q_3 проводить при температуре тройной точки воды (реперная точка), установленной произвольно ─ T_3=273,16 K, то любая другая температура будет определяться по формуле T=273,16 \frac{Q}{ Q_{3} }. Установленная таким образом температурная шкала называется термодинамической шкалой Кельвина . К сожаленью, точность измерения количества теплоты невысока, что не позволяет реализовать вышеописанный способ на практике.

2. Абсолютная температурная шкала может быть построена, если использовать в качестве термометрического тела идеальный газ. В самом деле, из уравнения Клапейрона вытекает соотношение

T=\frac{pV}{R}

Если измерять давление газа, близкого по свойствам к идеальному, находящегося в герметичном сосуде постоянного объёма, то таким способом можно установить температурую шкалу, которая носит название идеально-газовой. Преимущество этой шкалы состоит в том, что давление идеального газа при V=const изменяется линейно с температурой. Поскольку даже сильно разреженные газы по своим свойствам несколько отличаются от идеального газа, то реализация идеально - газовой шкалы связана с определёнными трудностями.

3. В различных учебниках по термодинамике приводятся доказательства того, что температура, измеренная по идеально-газовой шкале, совпадает с термодинамической температурой. Следует, однако, оговориться: несмотря на то, что численно термодинамическая и идеально-газовая шкалы абсолютно идентичны, с качественной точки зрения между ними есть принципиальная разница. Только термодинамическая шкала является абсолютно независимой от свойств термометрического вещества.

4.Как уже было указано, точное воспроизведение термодинамической шкалы, а также идеально-газовой, сопряжено с серьёзными трудностями. В первом случае необходимо тщательно измерять количество теплоты, которая подводится и отводится в изотермических процессах идеального теплового двигателя. Такого рода измерения неточны. Воспроизедение термодинамической (идеально-газовой) температурной шкалы в диапазоне от 10 до 1337 K возможно с помощью газового термометра. При более высоких температурах заметно проявляется диффузия реального газа сквозь стенки резервуара, а при температурах в несколько тысяч градусов многоатомные газы распадаются на атомы. При ещё больших температурах реальные газы ионизируются и превращаются в плазму, которая не подчиняется уравнению Клапейрона. Наиболее низкая температура, которая может быть измерена газовым термометром, заполненным гелием при низком давлении равна 1K. Для измерения температур за пределами возможностей газовых термометров используют специальные методы измерения. Подробнее см. Термометрия .

Напишите отзыв о статье "Термодинамическая температура"

Примечания

Литература

  • Украинская советская энциклопедия : в 12 томах = Українська радянська енциклопедія (укр.) / За ред. М. Бажана . - 2-ге вид. - К. : Гол. редакція УРЕ, 1974-1985.
  • Малая горная энциклопедия . В 3-х т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого . - Донецк: Донбасс, 2004. - ISBN 966-7804-14-3 .
  • Белоконь Н. И. Термодинамика. - М .: Госэнергоиздат, 1954. - 417 с.
  • Белоконь Н. И. Основные принципы термодинамики. - М .: Недра, 1968. - 112 с.
  • Кириллин В.А. Техническая термодинамика. - М .: Энергоатомиздат, 1983. - 414 с.
  • Вукалович М. П., Новиков И. И. Техническая термодинамика. - М .: Энергия, 1968. - 497 с.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. - М .: ФИЗМАТЛИТ, 2005. - 544 с. - ISBN 5-9221-0601-5 .
  • Базаров И. П. Термодинамика. - М .: Высшая школа, 1991. - 376 с. - ISBN 5-06-000626-3 .
  • Різак В.,Різак І., Рудавський Е. Кріогенна фізика і техніка. - К. : Наукова думка, 2006. - 512 с. - ISBN 966-00-480-X.

Отрывок, характеризующий Термодинамическая температура

Пьер оглядывался вокруг себя налившимися кровью глазами и не отвечал. Вероятно, лицо его показалось очень страшно, потому что офицер что то шепотом сказал, и еще четыре улана отделились от команды и стали по обеим сторонам Пьера.
– Parlez vous francais? – повторил ему вопрос офицер, держась вдали от него. – Faites venir l"interprete. [Позовите переводчика.] – Из за рядов выехал маленький человечек в штатском русском платье. Пьер по одеянию и говору его тотчас же узнал в нем француза одного из московских магазинов.
– Il n"a pas l"air d"un homme du peuple, [Он не похож на простолюдина,] – сказал переводчик, оглядев Пьера.
– Oh, oh! ca m"a bien l"air d"un des incendiaires, – смазал офицер. – Demandez lui ce qu"il est? [О, о! он очень похож на поджигателя. Спросите его, кто он?] – прибавил он.
– Ти кто? – спросил переводчик. – Ти должно отвечать начальство, – сказал он.
– Je ne vous dirai pas qui je suis. Je suis votre prisonnier. Emmenez moi, [Я не скажу вам, кто я. Я ваш пленный. Уводите меня,] – вдруг по французски сказал Пьер.
– Ah, Ah! – проговорил офицер, нахмурившись. – Marchons!
Около улан собралась толпа. Ближе всех к Пьеру стояла рябая баба с девочкою; когда объезд тронулся, она подвинулась вперед.
– Куда же это ведут тебя, голубчик ты мой? – сказала она. – Девочку то, девочку то куда я дену, коли она не ихняя! – говорила баба.
– Qu"est ce qu"elle veut cette femme? [Чего ей нужно?] – спросил офицер.
Пьер был как пьяный. Восторженное состояние его еще усилилось при виде девочки, которую он спас.
– Ce qu"elle dit? – проговорил он. – Elle m"apporte ma fille que je viens de sauver des flammes, – проговорил он. – Adieu! [Чего ей нужно? Она несет дочь мою, которую я спас из огня. Прощай!] – и он, сам не зная, как вырвалась у него эта бесцельная ложь, решительным, торжественным шагом пошел между французами.
Разъезд французов был один из тех, которые были посланы по распоряжению Дюронеля по разным улицам Москвы для пресечения мародерства и в особенности для поимки поджигателей, которые, по общему, в тот день проявившемуся, мнению у французов высших чинов, были причиною пожаров. Объехав несколько улиц, разъезд забрал еще человек пять подозрительных русских, одного лавочника, двух семинаристов, мужика и дворового человека и нескольких мародеров. Но из всех подозрительных людей подозрительнее всех казался Пьер. Когда их всех привели на ночлег в большой дом на Зубовском валу, в котором была учреждена гауптвахта, то Пьера под строгим караулом поместили отдельно.

В Петербурге в это время в высших кругах, с большим жаром чем когда нибудь, шла сложная борьба партий Румянцева, французов, Марии Феодоровны, цесаревича и других, заглушаемая, как всегда, трубением придворных трутней. Но спокойная, роскошная, озабоченная только призраками, отражениями жизни, петербургская жизнь шла по старому; и из за хода этой жизни надо было делать большие усилия, чтобы сознавать опасность и то трудное положение, в котором находился русский народ. Те же были выходы, балы, тот же французский театр, те же интересы дворов, те же интересы службы и интриги. Только в самых высших кругах делались усилия для того, чтобы напоминать трудность настоящего положения. Рассказывалось шепотом о том, как противоположно одна другой поступили, в столь трудных обстоятельствах, обе императрицы. Императрица Мария Феодоровна, озабоченная благосостоянием подведомственных ей богоугодных и воспитательных учреждений, сделала распоряжение об отправке всех институтов в Казань, и вещи этих заведений уже были уложены. Императрица же Елизавета Алексеевна на вопрос о том, какие ей угодно сделать распоряжения, с свойственным ей русским патриотизмом изволила ответить, что о государственных учреждениях она не может делать распоряжений, так как это касается государя; о том же, что лично зависит от нее, она изволила сказать, что она последняя выедет из Петербурга.
У Анны Павловны 26 го августа, в самый день Бородинского сражения, был вечер, цветком которого должно было быть чтение письма преосвященного, написанного при посылке государю образа преподобного угодника Сергия. Письмо это почиталось образцом патриотического духовного красноречия. Прочесть его должен был сам князь Василий, славившийся своим искусством чтения. (Он же читывал и у императрицы.) Искусство чтения считалось в том, чтобы громко, певуче, между отчаянным завыванием и нежным ропотом переливать слова, совершенно независимо от их значения, так что совершенно случайно на одно слово попадало завывание, на другие – ропот. Чтение это, как и все вечера Анны Павловны, имело политическое значение. На этом вечере должно было быть несколько важных лиц, которых надо было устыдить за их поездки во французский театр и воодушевить к патриотическому настроению. Уже довольно много собралось народа, но Анна Павловна еще не видела в гостиной всех тех, кого нужно было, и потому, не приступая еще к чтению, заводила общие разговоры.
Новостью дня в этот день в Петербурге была болезнь графини Безуховой. Графиня несколько дней тому назад неожиданно заболела, пропустила несколько собраний, которых она была украшением, и слышно было, что она никого не принимает и что вместо знаменитых петербургских докторов, обыкновенно лечивших ее, она вверилась какому то итальянскому доктору, лечившему ее каким то новым и необыкновенным способом.
Все очень хорошо знали, что болезнь прелестной графини происходила от неудобства выходить замуж сразу за двух мужей и что лечение итальянца состояло в устранении этого неудобства; но в присутствии Анны Павловны не только никто не смел думать об этом, но как будто никто и не знал этого.
– On dit que la pauvre comtesse est tres mal. Le medecin dit que c"est l"angine pectorale. [Говорят, что бедная графиня очень плоха. Доктор сказал, что это грудная болезнь.]
– L"angine? Oh, c"est une maladie terrible! [Грудная болезнь? О, это ужасная болезнь!]
– On dit que les rivaux se sont reconcilies grace a l"angine… [Говорят, что соперники примирились благодаря этой болезни.]
Слово angine повторялось с большим удовольствием.
– Le vieux comte est touchant a ce qu"on dit. Il a pleure comme un enfant quand le medecin lui a dit que le cas etait dangereux. [Старый граф очень трогателен, говорят. Он заплакал, как дитя, когда доктор сказал, что случай опасный.]
– Oh, ce serait une perte terrible. C"est une femme ravissante. [О, это была бы большая потеря. Такая прелестная женщина.]
– Vous parlez de la pauvre comtesse, – сказала, подходя, Анна Павловна. – J"ai envoye savoir de ses nouvelles. On m"a dit qu"elle allait un peu mieux. Oh, sans doute, c"est la plus charmante femme du monde, – сказала Анна Павловна с улыбкой над своей восторженностью. – Nous appartenons a des camps differents, mais cela ne m"empeche pas de l"estimer, comme elle le merite. Elle est bien malheureuse, [Вы говорите про бедную графиню… Я посылала узнавать о ее здоровье. Мне сказали, что ей немного лучше. О, без сомнения, это прелестнейшая женщина в мире. Мы принадлежим к различным лагерям, но это не мешает мне уважать ее по ее заслугам. Она так несчастна.] – прибавила Анна Павловна.
Полагая, что этими словами Анна Павловна слегка приподнимала завесу тайны над болезнью графини, один неосторожный молодой человек позволил себе выразить удивление в том, что не призваны известные врачи, а лечит графиню шарлатан, который может дать опасные средства.
– Vos informations peuvent etre meilleures que les miennes, – вдруг ядовито напустилась Анна Павловна на неопытного молодого человека. – Mais je sais de bonne source que ce medecin est un homme tres savant et tres habile. C"est le medecin intime de la Reine d"Espagne. [Ваши известия могут быть вернее моих… но я из хороших источников знаю, что этот доктор очень ученый и искусный человек. Это лейб медик королевы испанской.] – И таким образом уничтожив молодого человека, Анна Павловна обратилась к Билибину, который в другом кружке, подобрав кожу и, видимо, сбираясь распустить ее, чтобы сказать un mot, говорил об австрийцах.

Доказанная в предыдущем параграфе теорема о независимости к. п. д. обратимых машин от свойств рабочего вещества позволяет установить температурную шкалу, не зависящую от выбора термометрического тела.

В соответствии с указанной теоремой величина

а следовательно, и отношение для цикла Карно, зависят только от температур нагревателя и холодильника. Обозначив величины этих температур по некоторой, пока не известной нам шкале через и можно написать, что

где универсальная (т. е. одинаковая для всех циклов Карно) функция температур нагревателя и холодильника. Соотношение (106.1) дает возможность определять температуру тел через количества тепла, получаемые и отдаваемые при циклах Карно. Докажем, что функция (106.1) обладает следующим свойством:

(106.2)

где есть опять-таки универсальная функция температуры. Рассмотрим две обратимые машины (рис. 106.1), холодильник одной из которых служит одновременно нагревателем для другой. Предположим, что вторая машина отбирает от резервуара с температурой Ф такое же количество тепла, какое отдает ему первая машина.

Для машины . Следовательно, соотношение (106.1) для этой машины имеет вид

Для машины Поэтому согласно (106.1)

(106.4)

Рассматривая машины а также резервуар с температурой как единую обратимую машину, получающую тепло Q, от нагревателя с температурой 08 и отдающую тепло холодильнику с температурой можно написать:

(106.5)

Разделив (106.5) на (106.3), получим, что

Сравнение этого выражения с (106.4) приводит к соотношению

Это соотношение связывает температуры и двух тел, причем в нем фигурирует температура -6а третьего тела. Условившись раз и навсегда о выборе этого тела, т. е. сделав неизменной, мы сведем функцию , стоящую в числителе и знаменателе формулы (106.6), к функции одной переменной . Обозначив эту функцию через мы придем к формуле (106.2).

Функция зависит только от температуры. Поэтому ее значения можно использовать для характеристики температуры соответствующего тела, т. е. полагать температуру тела равной 0, где Тогда выражение (106.1) примет следующий вид:

Соотношение (106.7) положено в основу так называемой термодинамической шкалы температур. Преимущество этой шкалы заключается в том, что она не зависит от выбора тела (рабочего вещества в цикле Карно), используемого для измерения температуры.

В соответствии с (106.7) для сопоставления температур двух тел нужно осуществить цикл Карно, используя эти тела в качестве нагревателя и холодильника. Отношение количества тепла, отданного телу - «холодильнику», к количеству тепла, отобранного от тела - «нагревателя», даст отношение температур рассматриваемых тел. Для однозначного ределения численного значения 0 необходимо условиться о выборе единицы температуры, т. е. градуса. За абсолютный градус принимается одна сотая разности температур кипящей при атмосферном давлении воды и тающего льда. Таким образом, градус абсолютной термодинамической шкалы равен градусу идеальной газовой шкалы.

Легко установить, что термодинамическая шкала температур совпадает с идеальной газовой шкалой. Действительно, в соответствии с (105.3)

Сопоставляя (106.7) с (106.8), получим, что

Следовательно, 0 пропорциональна Т и, поскольку градус обеих шкал одинаков,