Факторы определяющие скорость химической реакции. Скорость химической реакции: условия, примеры. Факторы, влияющие на скорость химической реакции

Скорость химических реакций. Химическое равновесие

План:

1. Понятие о скорости химической реакции.

2. Факторы, влияющие на скорость химической реакции.

3. Химическое равновесие. Факторы, влияющие на смещение равновесие. Принцип Ле-Шателье.

Химические реакции протекают с разными скоростями. Очень быстро протекают реакции в водных растворах. Например, если слить растворы хлорида бария и сульфата натрия, то тут же немедленно выпадает белый осадок сульфата бария. Быстро, но не мгновенно этилен обесцвечивает бромную воду. Медленно образуется ржавчина на железных предметах, появляется налет на медных и бронзовых изделиях, гниет листва.

Изучением скорости химической реакции, а также выявлением её зависимости от условий проведения процесса занимается наука - химическая кинетика.

Если реакции протекают в однородной среде, например, в растворе или газовой фазе, то взаимодействие реагирующих веществ происходит во всем объёме. Такие реакции называются гомогенными.

Если реакция идет между веществами, находящимися в разных агрегатных состояниях (например, между твердым веществом и газом или жидкостью) или между веществами, не способными образовывать гомогенную среду (например, между двумя несмешивающимися жидкостями), то она проходит только на поверхности соприкосновения веществ. Такие реакции называются гетерогенными.

υ гомогенной реакции определяется изменением количества вещества в единицу в единице объёма:

υ =Δ n / Δt ∙V

где Δ n – изменение числа молей одного из веществ (чаще всего исходного, но может быть и продукта реакции), (моль);

V – объем газа или раствора (л)

Поскольку Δ n / V = ΔC (изменение концентрации), то

υ =Δ С / Δt (моль/л∙ с)

υ гетерогенной реакции определяется изменением количества вещества в единицу времени на единице поверхности соприкосновения веществ.

υ =Δ n / Δt ∙ S

где Δ n – изменение количества вещества (реагента или продукта), (моль);

Δt – интервал времени (с, мин);

S – площадь поверхности соприкосновения веществ (см 2 , м 2)

Почему скорость разных реакций не одинакова?

Для того чтобы началась химическая реакция, молекулы реагирующих веществ должны столкнуться. Но не каждое их столкновение приводит к химической реакции. Для того чтобы столкновение привело к химической реакции, молекулы должны иметь достаточно высокую энергию. Частицы, способные при столкновении, вступать в химическую реакцию, называются активными. Они обладают избыточной энергией по сравнению со средней энергией большинства частиц – энергией активации Е акт. Активных частиц в веществе намного меньше, чем со средней энергией, поэтому для начала многих реакций системе необходимо сообщить некоторую энергию (вспышка света, нагревание, механический удар).


Энергетический барьер (величина Е акт ) разных реакций различен, чем он ниже, тем легче и быстрее протекает реакция.

2. Факторы, влияющие на υ (количество соударений частиц и их эффективность).

1) Природа реагирующих веществ: их состав, строение => энергия активации

▪ чем меньше Е акт , тем больше υ;

Если Е акт < 40 кДж/моль, то это значит, что значительная часть столкновений между частицами реагирующих веществ приводит к их взаимодействию, и скорость такой реакции очень большая. Все реакции ионного обмена протекают практически мгновенно, т.к. в этих реакциях участвуют разноименнозаряженные частицы, и энергия активации в этих случаях ничтожно мала.

Если Е акт > 120 кДж/моль, то это означает, что лишь ничтожная часть столкновений между взаимодействующим частицами приводит к реакции. Скорость таких реакций очень мала. Например, ржавление железа, или

протекание реакции синтеза аммиака при обычной температуре заметить практически невозможно.

Если Е акт имеют промежуточные значения (40 – 120 кДж/моль), то скорость таких реакций будут средними. К таким реакциям можно отнести взаимодействие натрия с водой или этанолом, обесцвечивание этиленом бромной воды и др.

2) Температура : при t на каждые 10 0 С, υ в 2-4 раза (правило Вант-Гоффа).

υ 2 = υ 1 ∙ γ Δt/10

При t, количество активных частиц (с Е акт ) и их активных соударений.

Задача 1. Скорость некоторой реакции при 0 0 С равна 1 моль/л ∙ ч, температурный коэффициент реакции равен 3. Какой будет скорость данной реакции при 30 0 С?

υ 2 = υ 1 ∙ γ Δt/10

υ 2 =1∙3 30-0/10 = 3 3 =27 моль/л∙ч

3) Концентрация: чем больше, тем чаще происходят соударения и υ . При постоянной температуре для реакции mA + nB = C по закону действующих масс:

υ = k ∙ С A m ∙ C B n

где k – константа скорости;

С – концентрация (моль/л)

Закон действующих масс:

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

З.д.м. не учитывает концентрации реагирующих веществ, находящихся в твердом состоянии, т.к. они реагируют на поверхности и их концентрации обычно остаются постоянными.

Задача 2. Реакция идет по уравнению А +2В → С. Во сколько раз и как изменится скорость реакции, при увеличении концентрации вещества В в 3 раза?

Решение:υ = k ∙ С A m ∙ C B n

υ = k ∙ С A ∙ C B 2

υ 1 = k ∙ а ∙ в 2

υ 2 = k ∙ а ∙ 3 в 2

υ 1 / υ 2 = а ∙ в 2 / а ∙ 9 в 2 = 1/9

Ответ: увеличится в 9 раз

Для газообразных веществ скорость реакции зависит от давления

Чем больше давление, тем выше скорость.

4) Катализаторы – вещества, которые изменяют механизм реакции, уменьшают Е акт => υ .

▪ Катализаторы остаются неизменными по окончании реакции

▪ Ферменты – биологические катализаторы, по природе белки.

▪ Ингибиторы – вещества, которые ↓ υ

5) Для гетерогенных реакций υ зависит также:

▪ от состояния поверхности соприкосновения реагирующих веществ.

Сравните: в 2 пробирки налили одинаковые объёмы раствора серной кислоты и одновременно опустили в одну – железный гвоздь, в другую – железные опилки.Измельчение твердого вещества приводит к увеличению числа его молекул, которые могут одновременно вступить в реакцию. Следовательно, во второй пробирке скорость реакции будет больше, чем в первой.

Химическая реакция - это превращение одних веществ в другие.

К какому бы типу ни относились химические реакции, они осуществляются с различной скоростью. Например, геохимические превращения в недрах Земли (образование кристаллогидратов, гидролиз солей, синтез или разложение минералов) протекают тысячи, миллионы лет. А такие реакции, как горение пороха, водорода, селитр, бертолетовой соли происходят в течение долей секунд.

Под скоростью химической реакции понимается изменение количеств реагирующих веществ (или продуктов реакции) в единицу времени. Чаще всего используется понятие средней скорости реакции (Δc p) в интервале времени.

v ср = ± ∆C/∆t

Для продуктов ∆С > 0, для исходных веществ -∆С < 0. Наиболее употребляемая единица измерения - моль на литр в секунду (моль/л*с).

Скорость каждой химической реакции зависит от многих факторов: от природы реагирующих веществ, концентрации реагирующих веществ, изменении температуры реакции, степени измельчённости реагирующих веществ, изменении давления, введения в среду реакци катализатора.

Природа реагирующих веществ существенно влияет на скорость химической реакции. В качестве примера рассмотрим взаимодействие некоторых металлов с постоянным компонентом - водой. Определим металлы: Na, Са, Аl ,Аu . Натрий реагирует с водой при обычной температуре очень бурно, с выделением большого количества теплоты.

2Na + 2H 2 O = 2NaOH + H 2 + Q;

Менее энергично при обычной температуре реагирует с водой кальций:

Са + 2Н 2 О = Са(ОН) 2 + H 2 + Q;

Алюминий реагирует с водой уже при повышенной температуре:

2Аl + 6Н 2 О = 2Аl(ОН)з + ЗН 2 - Q;

А золото - один из неактивных металлов, с водой ни при обычной, ни при повышенной температуре не реагирует.

Скорость химической реакции находится в прямой зависимости от концентрации реагирующих веществ . Так, для реакции:

C 2 H 4 + 3O 2 = 2CO 2 + 2Н 2 О;

Выражение скорости реакции имеет вид:

v = k**[О 2 ] 3 ;

Где k - константа скорости химической реакции, численно равная скорости данной реакции при условии, что концентрации реагирующих компонентов равны 1 г/моль; величины [С 2 Н 4 ] и [О 2 ] 3 соответствуют концентрациям реагирующих веществ, возведенные в степень их стехиометрических коэффициентов. Чем больше концентрация [С 2 Н 4 ] или [О 2 ], тем больше в единицу времени соударений молекул данных веществ, следовательно больше скорость химической реакции.

Скорости химических реакций, как правило, находятся также в прямой зависимости от температуры реакции . Естественно, при увеличении температуры кинетическая энергия молекул возрастает, что так же приводит к большим столкновением молекул в единицу времени. Многочисленные опыты показали, что при изменении температуры на каждые 10 градусов скорость реакции изменяется в 2-4 раза (правило Вант-Гоффа):

где V T 2 - скорость химической реакции при Т 2 ; V ti - скорость химической реакции при T 1 ; g- температурный коэффициент скорости реакции.

Влияние степени измельчённости веществ на скорость реакции так же находится в прямой зависимости. Чем в более мелком состоянии находятся частицы реагирующих веществ, тем в большей степени они соприкасаются друг с другом в единицу времени тем больше скорость химической реакции. Поэтому, как правило, реакции между газообразными веществами или растворами протекают быстрее, чем в твердом состоянии.

Изменение давления оказывает влияние на скорость реакции между веществами, находящимися в газообразном состоянии. Находясь в замкнутом объеме при постоянной температуре реакция протекает со скоростью V 1. Если в данной системе мы повысим давление (следовательно, уменьшим объем), концентрации реагирующих веществ возрастут, увеличится соударение их молекул в единицу времени, скорость реакции повысится до V 2 (v 2 > v 1).

Катализаторы - это вещества, изменяющие скорость химической реакции, но остающиеся неизменными после того, как химическая реакция заканчивается. Влияние катализаторов на скорость реакции называется катализом, Катализаторы могут как ускорять химико-динамический процесс, так и замедлять его. Когда взаимодействующие вещества и катализатор находятся в одном агрегатном состоянии, то говорят о гомогенном катализе, а при гетерогенном катализе реагирующие вещества и катализатор находятся в разных агрегатных состояниях. Катализатор с реагентами образует промежуточный комплекс. Например, для реакции:

Катализатор (К) образует комплекс с А или В - АК, ВК, который высвобождает К при взаимодействии со свободной частицей А или В:

АК + В = АВ + К

ВК + А = ВА + К;

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Цель работы: изучение скорости химической реакции и ее зависимости от различных факторов: природы реагирующих веществ, концентрации, температуры.

Химические реакции протекают с различной скоростью. Скоростью химической реакции называют изменением концентрации реагирующего вещества в единицу времени. Она равно числу актов взаимодействия в единицу времени в единице объёма для реакции, протекающих в гомогенной системе (для гомогенных реакций), или на единице поверхности раздела фаз для реакций, протекающих в гетерогенной системе (для гетерогенных реакций).

Средняя скорость реакции v ср . в интервале времени от t 1 до t 2 определяется отношением:

где С 1 и С 2 – молярная концентрация любого участника реакции в моменты времени t 1 и t 2 соответственно.

Знак “–“ перед дробью относиться к концентрации исходных веществ, ΔС < 0, знак “+” – к концентрации продуктов реакции, ΔС > 0.

Основные факторы, влияющие на скорость химической реакции: природа реагирующих веществ, их концентрация, давление (если в реакции участвуют газы), температура, катализатор, площадь поверхности раздела фаз для гетерогенных реакций.

Большинство химических реакций представляют собой сложные процессы, протекающие в несколько стадий, т.е. состоящие из нескольких элементарных процессов. Элементарные или простые реакции – это реакции, протекающие в одну стадию.

Для элементарных реакций зависимость скорости реакции от концентрации выражается законом действия масс.

При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам.

Для реакции в общем виде

а А + b В… → с С,

cогласно закону действия масс v выражается соотношением

v = К∙с(А) а ∙ с(В) b ,

где с(А) и с(В) – молярные концентрации реагирующих веществ А и В;

К – константа скорости данной реакции, равная v , если с(А) а =1 и с(В) b =1, и зависящая от природы реагирующих веществ, температуры, катализатора, площади поверхности раздела фаз для гетерогенных реакций.

Выражение зависимости скорости реакции от концентрации называют кинетическим уравнением.

В случае сложных реакций закон действия масс применим к каждой отдельной стадии.

Для гетерогенных реакций в кинетическое уравнение входят только концентрации газообразных и растворенных веществ; так, для горения угля

С (к) + О 2 (г) → СО 2 (г)

уравнение скорости имеет вид

v = К∙с(О 2)

Несколько слов о молекулярности и кинетическом порядке реакции.

Понятие «молекулярность реакции» применяют только к простым реакциям. Молекулярность реакции характеризует число частиц, участвующих в элементарном взаимодействии.


Различают моно-, би- и тримолекулярные реакции, в которых участвуют соответственно одна, две и три частицы. Вероятность одновременного столкновения трех частиц мала. Элементарный процесс взаимодействия более чем трех частиц неизвестен. Примеры элементарных реакций:

N 2 O 5 → NO + NO + O 2 (мономолекулярная)

H 2 + I 2 → 2HI (бимолекулярная)

2NO + Cl 2 → 2NOCl (тримолекулярная)

Молекулярность простых реакций совпадает с общим кинетическим порядком реакции. Порядок реакции определяет характер зависимости скорости от концентрации.

Общий (суммарный) кинетический порядок реакции – сумма показателей степеней при концентрациях реагирующих веществ в уравнении скорости реакции, определенная экспериментально.

С повышением температуры скорость большинства химических реакций увеличивается. Зависимость скорости реакции от температуры приближено определяется правилом Вант-Гоффа.

При повышении температуры на каждые 10 градусов скорость большинства реакций увеличивается в 2–4 раза.

где и – скорость реакции соответственно при температурах t 2 и t 1 (t 2 >t 1 );

γ – температурный коэффициент скорости реакции, это число, показывающее, во сколько раз увеличивается скорость химической реакции при увеличении температуры на 10 0 .

С помощью правила Вант-Гоффа возможно лишь примерно оценить влияние температуры на скорость реакции. Более точное описание зависимости скорости реакции температуры осуществимо в рамках теории активации Аррениуса.

Одним из методов ускорения химической реакции является катализ, который осуществляется при помощи веществ (катализаторов).

Катализаторы – это вещества, которые изменяют скорость химической реакции вследствие многократного участия в промежуточном химическом взаимодействии с реагентами реакции, но после каждого цикла промежуточного взаимодействия восстанавливают свой химический состав.

Механизм действия катализатора сводится к уменьшению величины энергии активации реакции, т.е. уменьшению разности между средней энергией активных молекул (активного комплекса) и средней энергией молекул исходных веществ. Скорость химической реакции при этом увеличивается.

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± ((С 2 - С 1) / (t 2 - t 1)) = ± (DС / Dt)

Где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) - если скорость определяется по продукту реакции, знак (-) - по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.
Факторы, влияющие на скорость химических реакций.
1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.
Примеры
Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.
Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.
Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

AA + bB + . . . ® . . .

  • [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.
Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.
Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:



(t 2 - t 1) / 10
Vt 2 / Vt 1 = g

(где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g- температурный коэффициент данной реакции).
Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

  • e -Ea/RT

где
A - постоянная, зависящая от природы реагирующих веществ;
R - универсальная газовая постоянная ;

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.
Энергетическая диаграмма химической реакции.

Экзотермическая реакция Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.
Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами . Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа ").

ОПРЕДЕЛЕНИЕ

Химическая кинетика – учение о скоростях и механизмах химических реакций.

Изучение скоростей протекания реакций, получение данных о факторах, влияющих на скорость химической реакции, а также изучение механизмов химических реакций осуществляют экспериментально.

ОПРЕДЕЛЕНИЕ

Скорость химической реакции – изменение концентрации одного из реагирующих веществ или продуктов реакции в единицу времени при неизменном объеме системы.

Скорость гомогенной и гетерогенной реакций определяются различно.

Определение меры скорости химической реакции можно записать в математической форме. Пусть – скорость химической реакции в гомогенной системе, n B – число моле какого-либо из получающихся при реакции веществ, V – объем системы, – время. Тогда в пределе:

Это уравнение можно упростить – отношение количества вещества к объему представляет собой молярную концентрацию вещества n B /V = c B , откуда dn B / V = dc B и окончательно:

На практике измеряют концентрации одного или нескольких веществ в определенные промежутки времени. Концентрации исходных веществ со временем уменьшаются, а концентрации продуктов – увеличиваются (рис. 1).


Рис. 1. Изменение концентрации исходного вещества (а) и продукта реакции (б) со временем

Факторы, влияющие на скорость химической реакции

Факторами, оказывающими влияние на скорость химической реакции, являются: природа реагирующих веществ, их концентрации, температура, присутствие в системе катализаторов, давление и объем (в газовой фазе).

С влиянием концентрации на скорость химической реакции связан основной закон химической кинетики – закон действующих масс (ЗДМ): скорость химической реакции прямопропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов. ЗДМ не учитывает концентрацию веществ в твердой фазе в гетерогенных системах.

Для реакции mA +nB = pC +qD математическое выражение ЗДМ будет записываться:

K × C A m × C B n

K × [A] m × [B] n ,

где k – константа скорости химической реакции, представляющая собой скорость химической реакции при концентрации реагирующих веществ 1моль/л. В отличие от скорости химической реакции, k не зависит от концентрации реагирующих веществ. Чем выше k, тем быстрее протекает реакция.

Зависимость скорости химической реакции от температуры определяется правилом Вант-Гоффа. Правило Вант-Гоффа: при повышении температуры на каждые десять градусов скорость большинства химических реакций увеличивается примерно в 2 – 4 раза. Математическое выражение:

(T 2) = (T 1) × (T2-T1)/10 ,

где – температурный коэффициент Вант-Гоффа, показывающий во сколько раз увеличилась скорость реакции при повышении температуры на 10 o С.

Молекулярность и порядок реакции

Молекулярность реакции определяется минимальным числом молекул, одновременно вступающих во взаимодействие (участвующих в элементарном акте). Различают:

— мономолекулярные реакции (примером могут служить реакции разложения)

N 2 O 5 = 2NO 2 + 1/2O 2

K × C, -dC/dt = kC

Однако, не все реакции, подчиняющиеся этому уравнению мономолекулярны.

— бимолекулярные

CH 3 COOH + C 2 H 5 OH = CH 3 COOC 2 H 5 + H 2 O

K × C 1 × C 2 , -dC/dt = k × C 1 × C 2

— тримолекулярные (встречаются очень редко).

Молекулярность реакции определяется ее истинным механизмом. По записи уравнения реакции определить ее молекулярность нельзя.

Порядок реакции определяется по виду кинетического уравнения реакции. Он равен сумме показателей степеней концентрации в этом уравнении. Например:

CaCO 3 = CaO + CO 2

K × C 1 2 × C 2 – третий порядок

Порядок реакции может быть дробным. В таком случае он определяется экспериментально. Если реакция протекает в одну стадию, то порядок реакции и ее молекулярность совпадают, если в несколько стадий, то порядок определяется самой медленной стадией и равен молекулярности этой реакции.

Примеры решения задач

ПРИМЕР 1

Задание Реакция протекает по уравнению 2А + В = 4С. Начальная концентрация вещества А 0,15 моль/л, а через 20 секунд – 0,12 моль/л. Вычислите среднюю скорость реакции.
Решение Запишем формулу для вычисления средней скорости химической реакции: