Международная электротехническая комиссия (МЭК). Смотреть что такое "МЭК" в других словарях Что такое мэк

МЭК-61850 - это основной протокол передачи данных в системах автоматизации электроподстанций (устройства релейной защиты, анализаторы качества электроэнергии и другие устройства). В качестве интерфейсом используются сети Ethernet.

Протокол содержит следующие подпротоколы:

    MMS - передача текущих значений по протоколу TCP/IP.

    GOOSE - инициативная передача устройством широковещательной посылки с сообщениями.

    Передача файлов - получение из прибора различных файлов (например осциллограмм).

OPC-сервер IEC61850 MasterOPC Server разработки компании ИнСАТ предназначен для работы с любым оборудованием, поддерживающим обмен данными по протоколу, описанному в стандарте МЭК-61850. Сервер реализован в виде плагина для .

IEC61850 MasterOPC Server лицензируется по количеству опрашиваемых переменных (точек ввода/вывода) со следующими градациями - 32, 500, 2500, безлимитная. Версия на 32 точки распространяется бесплатно.

Преимущества OPC- сервера IEC61850

К основным преимуществам OPC- сервера относят высокую производительность, простоту установки и использования. Он сводит к минимуму разрывы соединений и аварийные отказы. Это гарантирует стабильное функционирование и бесперебойный сбор сведений. Чаще всего программу приобретают для автоматизации и диспетчеризации высоковольтных подстанций.

Основные характеристики IEC61850 OPC сервера:

  • поддержка стандартов OPC DA, OPC HDA, OPC UA;
  • связь с устройствами по Ethernet;
  • мониторинг значений переменных;
  • удаленный доступ к серверу через DCOM;
  • подключение одновременно к нескольким устройствам;
  • работа одновременно с несколькими клиентами;
  • экспорт и импорт тегов и устройств;
  • архивирование тегов с передачей архивов по OPC HDA.

Основные функции IEC61850 OPC сервера:

    Опрос текущих значений в режиме "клиент-сервер" по протоколу MMS;

    Получение событий от устройства по протоколу GOOSE;

    Поддержка встроенных и динамических наборов данных (REPORT) для ускорения опроса;

    Формирование OPC признаков качества и метки на основе получаемых от прибора атрибутов $q и $t;

    Считывание файлов из устройства, включая считывание осциллограмм. Для обработки осциллограмм в MasterSCADA разработан специальный бесплатный ;

    Поддержка резервирования каналов связи (до 4 каналов);

    Встроенная утилита импорта тегов из устройства.

Поддерживаемые операционные системы:

  • Windows 7;
  • Windows Server 2008R2;
  • Windows 8, Windows 8.1;
  • Windows Server 2012;
  • Windows 10.

Международная электротехническая комиссия (МЭК) является основной международной организацией по стандартизации в области электрических, электронных технологий и всех связанных с этой областью технологий, включая разработку и производство датчиков температуры. МЭК была основана в Лондоне в 1906 г. Первым президентом МЭК был знаменитый британский ученый лорд Келвин. В ее состав входят представители 82 стран (60 стран - полноправные члены, 22 страны - ассоциированные члены). Россия, Украина и Белоруссия являются полноправными членами МЭК. Представители НК РФ входят в состав многих технических комитетов и рабочих групп МЭК. Стандарты по температурным датчиках разрабатываются в основном в рамках ТК 65В/РГ5 (SC 65B - Measurement and control devices, WG5 - Temperature sensors and instruments). На базе НК РФ МЭК создана Российская группа экспертов по температуре (РГЭ), задачей которой является активное участие в разработке стандартов МЭК по температуре. Подробности - в разделе РГЭ . Вся информация о действующих и вновь разрабатываемых стандартах МЭК получена с портала МЭК: www.iec.ch

Действующие стандарты:

Об участии Российских специалистов в разработке стандартов МЭК - в разделе

Событийный протокол - своими словами

Если рассмотреть аллегорию с учебным классом, которая хорошо подходит, то циклические протоколы вроде Modbus, Profibus, Fieldbus - подобны опросу каждого из учеников последовательно. Даже если к устройству (ученику) нет никакого интереса. Событийные протоколы действуют иначе. Идет запрос не к каждому устройству сети (ученику) последовательно, а к классу в целом, затем собирается информация с устройства с измененным состоянием (ученика поднявшего руку). Таким образом, происходит сильная экономия сетевого трафика. Сетевые устройства не накапливают ошибки при некачественном соединении. С учетом того, что доставка события происходит с меткой времени, даже если есть некоторая задержка, мастер шины получает информацию о произошедших событиях на удаленных объектах.

Событийные протоколы в основном применяются на объектах электроэнергетики, а также системах дистанционного управления различных систем шлюзов и водоразделов. Применяются везде, где необходима удаленная диспетчеризация и управление сильно удаленных друг от друга объектов.

История развития и внедрения событийных протоколов в автоматизации энергообъектов

Примером одной из первых успешных попыток стандартизации информационного обмена для промышленных контроллеров является протокол ModBus, разработанный компанией Modicon в 1979 г. В настоящее время протокол существует в трёх вариантах: ModBus ASCII, ModBus RTU и ModBus TCP; его развитием занимается некоммерческая организация ModBus-IDA. Несмотря на то, что ModBus относится к протоколам прикладного уровня сетевой модели OSI и регламентирует функции чтения и записи регистров, соответствие регистров типам измерений и измерительным каналам не регламентировано. На практике это приводит к несовместимости протоколов устройств разных типов даже одного производителя и необходимости поддержки большого количества протоколов и их модификаций встроенным программным обеспечением УСПД (при двухуровневой модели опроса - ПО сервера сбора) с ограниченной возможностью повторного использования программного кода. Учитывая избирательное следование стандартам производителями (использование нерегламентированных алгоритмов подсчёта контрольной суммы, изменение порядка следования байтов и т.п.), ситуация усугубляется ещё больше. На сегодняшний день факт того, что ModBus не способен решить проблему протокольной разобщённости измерительного и контрольного оборудования для энергосистем, очевиден. Спецификация DLMS/COSEM (Device Language Message Specification), разработанная Ассоциацией пользователей DLMS (DLMS User Association) и переросшая в семейство стандартов IEC 62056, призвана обеспечить, как указано на официальном сайте ассоциации, "интероперабельную среду для структурного моделирования и обмена данными с контроллером". Спецификация разделяет логическую модель и физическое представление специализированного оборудования, а также определяет важнейшие концепции (регистр, профиль, расписание и т.п.) и операции над ними. Основным является стандарт IEC 62056-21, заменивший вторую редакцию IEC 61107.
Несмотря на более детальную по сравнению с ModBus проработку модели представления устройства и его функционирования, проблема полноты и ""чистоты" реализации стандарта, к сожалению, сохранилась. На практике опрос устройства с заявленной поддержкой DLMS одного производителя программой опроса другого производителя либо ограничен основными параметрами, либо попросту невозможен. Следует отметить, что спецификация DLMS, в отличие от протокола ModBus, оказалась крайне непопулярной среди отечественных производителей приборов учёта, в первую очередь, из-за большей сложности протокола, а также дополнительных накладных расходов на установку соединения и получение конфигурации устройства.
Полнота поддержки существующих стандартов производителями измерительного и контрольного оборудования недостаточна для преодоления внутрисистемной информационной разобщённости. Заявленная производителем поддержка того или иного стандартизированного протокола, как правило, не означает полную его поддержку и отсутствие привнесённых изменений. Образцом комплекса зарубежных стандартов является семейство стандартов IЕС 60870-5, созданных Международной электротехнической комиссией.
Различные реализации IЕС 60870-5-102 - обобщающего стандарта по передаче интегральных параметров в энергосистемах - представлены в устройствах ряда зарубежных производителей: Iskraemeco d.d. (Словения), Landis&Gyr AG (Швейцария), Circutor SA (Испания), EDMI Ltd (Сингапур) и др., но в большинстве случаев - только как дополнительные. В качестве основных протоколов передачи данных используются проприетарные протоколы или вариации DLMS. Стоит отметить, что IЕС 870-5-102 не получил широкого распространения ещё и по той причине, что некоторые производители приборов учета, в том числе отечественные, реализовали в своих устройствах модифицированные телемеханические протоколы (IEС 60870-5-101, IEС 60870-5-104), игнорируя данный стандарт.

Похожая ситуация наблюдается и среди производителей РЗА: при наличии действующего стандарта IEС 60870-5-103 зачастую реализуется ModBus-подобный протокол. Предпосылкой к этому, очевидно, стало отсутствие поддержки указанных протоколов большинством систем верхнего уровня. Телемеханические протоколы, описанные в стандартах IEС 60870-5-101 и IEС 60870-5-104, могут быть использованы при необходимости интеграции систем телемеханики и учёта электроэнергии. В связи с этим, они нашли широкое применение в системах диспетчеризации.

Технические спецификации протоколов автоматизации

В современных системах автоматизации, в результате постоянной модернизации производства, все чаще встречаются задачи построения распределенных промышленных сетей с использованием событийных протоколов передачи данных. Для организации промышленных сетей энергообъектов используется множество интерфейсов и протоколов передачи данных, например, IEC 60870-5-104, IEC 61850 (MMS, GOOSE, SV) и пр. Они необходимы для передачи данных между датчиками, контроллерами и исполнительными механизмами (ИМ), связи нижнего и верхнего уровней АСУ ТП.

Протоколы разрабатываются с учетом особенностей технологического процесса, обеспечивая надежное соединение и высокую точность передачи данных между различными устройствами. Наряду с надежностью работы в жестких условиях все более важными требованиями в системах АСУ ТП становятся функциональные возможности, гибкость в построении, простота интеграции и обслуживания, соответствие промышленным стандартам. Рассмотрим технические особенности некоторых из указанных выше протоколов.

Протокол IEC 60870-5-104

Стандарт IEC 60870-5-104 формализует инкапсуляцию блока ASDU из документа IEC 60870-5-101 в стандартные сети TCP/IP. Поддерживается как Ethernet, так и модемное соединение с использованием протокола РРР. Криптографическая безопасность данных формализована в стандарте IEC 62351. Стандартный порт TCP 2404.
Данный стандарт определяет использование открытого интерфейса TCP/IP для сети, содержащей, например, LAN (локальная вычислительная сеть) для устройства телемеханики, которая передает ASDU в соответствии с МЭК 60870-5-101. Маршрутизаторы, включающие маршрутизаторы для WAN (глобальная вычислительная сеть) различных типов (например, Х.25, Фрейм реле, ISDN и т.п.), могут соединяться через общий интерфейс ТСР/IР-LAN.

Пример обшей архитектуры применения IEC 60870-5-104

Интерфейс транспортного уровня (интерфейс между пользователем и TCP) - это ориентированный на поток интерфейс, в котором не определяются какие-либо старт-стопные механизмы для ASDU (IEC 60870-5-101). Чтобы определить начало и конец ASDU, каждый заголовок APCI включает следующие маркировочные элементы: стартовый символ, указание длины ASDU вместе с полем управления. Может быть передан либо полный APDU, либо (для целей управления) только поля APCI.

Структура пакета данных протокола IEС 60870-5-104

При этом:

APCI - Управляющая Информация Прикладного Уровня;
- ASDU - Блок Данных. Обслуживаемый Прикладным Уровнем (Блок данных Прикладного Уровня);
- APDU - Протокольный Блок Данных Прикладного Уровня.
- СТАРТ 68 Н определяет точку начала внутри потока данных.
Длина APDU определяет длину тела APDU, которое состоит из четырех байтов поля управления APCI плюс ASDU. Первый учитываемый байт - это первый байт поля управления, а последний учитываемый байт - это последний байт ASDU. Максимальная длина ASDU ограничена 249 байтами, т.к. максимальное значение длины поля APDU равно 253 байта (APDUmax=255 минус 1 байт начала и 1 байт длины), а длина поля управления - 4 байта.
Данный протокол передачи данных, в настоящий момент, де-факто является стандартным протоколом диспетчеризации для предприятий электроэнергетического сектора. Модель данных в данном стандарте развита более серьёзно, однако в нём не представлено никакое унифицированное описание энергообъекта.

Протокол DNP-3

DNP3 (Distributed Network Protocol) - это протокол передачи данных, используемый для связи между компонентами АСУ ТП. Был разработан для удобного взаимодействия между различными типами устройств и систем управления. Может применяться на различных уровнях АСУ ТП. Существует расширение Secure Authentication для DNP3 для безопасной аутентификации.
В России этот стандарт распространен слабо, однако некоторые устройства автоматизации все же поддерживают его. Долгое время протокол не был стандартизован, но сейчас он утвержден как стандарт IEEE-1815. DNP3 поддерживает и последовательные линии связи RS-232/485, и сети TCP/IP. Протокол описывает три уровня модели OSI: прикладной, канальный и физический. Его отличительной особенностью является возможность передачи данных как от ведущего устройства к ведомому, так и между ведомыми устройствами. DNP3 также поддерживает спорадическую передачу данных от ведомых устройств. В основу передачи данных положен, как и в случае с МЭК-101/104, принцип передачи таблицы значений. При этом с целью оптимизации использования коммуникационных ресурсов ведется посылка не всей базы данных, а только ее переменной части.
Важным отличием протокола DNP3 от рассмотренных ранее является попытка объектного описания модели данных и независимость объектов данных от передаваемых сообщений. Для описания структуры данных в DNP3 используется XML-описание информационной модели. DNP3 базируется на трех уровнях сетевой модели OSI: прикладном (оперирует объектами основных типов данных), канальном (предоставляет несколько способов извлечения данных) и физическом (в большинстве случаев используются интерфейсы RS-232 и RS-485). Каждое устройство имеет свой уникальный адрес для данной сети, представленный в виде целого числа от 1 до 65520. Основные термины:
- Outslation - ведомое устройство.
- Master - ведущее устройство.
- Frame (фрэйм) - пакеты, передаваемые и принимаемые на канальном уровне. Максимальный размер пакета 292 байта.
- Static data (постоянные данные) - данные, ассоциированные с каким-либо реальным значением (например, дискретным или аналоговым сигналом)
- Event data (событийные данные) - данные, ассоциированные с каким-либо значимым событием (например, изменения состояния. достижение значением пороговой отметки). Предоставляется возможность присоединения временной метки.
- Variation (вариация) - определяет, как интерпретируется значение, характеризуется целым числом.
- Group (группа) - определяет тип значения, характеризуется целым числом (например, постоянное аналоговое значение относится к группе 30, а событийное аналоговое значение к группе 32). Для каждой группы назначен набор вариаций, с помощью которых интерпретируются значения этой группы.
- Object (объект) - данные фрейма, ассоциированные с каким-то конкретным значением. Формат объекта зависит от группы и вариации.
Список вариаций приведен ниже.

Вариации для постоянных данных:


Вариации для событийных данных:


Флаги подразумевают под собой наличие специального байта со следующими информационными битами: источник данных on-line, источник данных был перезагружен, соединение с источником потеряно, запись значения форсирована, значение вне допустимых границ.


Заголовок фрейма:

Синхронизация - 2 байта синхронизации, позволяющие получателю идентифицировать начало фрэйма. Длина - количество байт в оставшейся части пакета без учета октетов CRC. Контроль соединения - байт для координирования приема передачи фрэйма. Адрес назначения - адрес устройства, которому назначается передача. Исходный адрес - адрес устройства, осуществляющего передачу. CRC - контрольная сумма для байта заголовка. Раздел данных DNP3 фрэйма содержит (помимо самих данных) по 2 байта CRC для каждых 16 байт передаваемой информации. Максимальное количество байт данных (не включая CRC) для одного фрэйма - 250.

Протокол IEC 61850 MMS

MMS (Manufacturing Message Specification) - протокол передачи данных по технологии «клиент-сервер». Стандарт МЭК 61350 не описывает протокол MMS. Глава МЭК 61850-8-1 описывает лишь порядок назначения сервисов передачи данных, описанных стандартом МЭК 61850, на протокол MMS, описанный стандартом ИСО/МЭК 9506. Для того, чтобы лучше понять, что это означает, необходимо подробнее рассмотреть, каким образом стандарт МЭК 61850 описывает абстрактные коммуникационные сервисы и для чего это сделано.
Одной из основных идей, заложенных в стандарт МЭК 61850, является его неизменность со временем. Для того, чтобы это обеспечить, главы стандарта последовательно описывают сначала концептуальные вопросы передачи данных внутри и между энергообъектами, затем описывается так называемый «абстрактный коммуникационный интерфейс» и лишь на заключительном этапе описывается назначение абстрактных моделей на протоколы передачи данных.

Таким образом, концептуальные вопросы и абстрактные модели оказываются независимыми от используемых технологий передачи данных (проводные, оптические или радиоканалы), поэтому не потребуют пересмотра, вызванного прогрессом в области технологий передачи данных.
Абстрактный коммуникационный интерфейс, описываемый МЭК 61850-7-2. включает в себя как описание моделей устройств (то есть стандартизует понятия «логического устройства», «логического узла», «управляющего блока» и т.п.). так и описание сервисов передачи данных. Один из таких сервисов - SendGOOSEMessage. Помимо указанного сервиса, описывается ещё более 60 сервисов, стандартизирующих процедуру установления связи между клиентом и сервером (Associate, Abort, Release), считывания информационной модели (GetServerDirectory, GelLogicalDeviceDirectory, GetLogicalNodeDirectory), считывание значений переменных (GetAllDataValues, GetDataValues и т.д.), передачу значений переменных в виде отчётов (Report) и другие. Передача данных в перечисленных сервисах осуществляется по технологии «клиент-сервер».

Например, сервером в данном случае может выступать устройство релейной защиты, а клиентом - SCADA-система. Сервисы считывания информационной модели позволяют клиенту считать с устройства полную информационную модель, то есть воссоздать дерево из логических устройств, логических узлов, элементов и атрибутов данных. При этом клиент получит полное семантическое описание данных и их структуру. Сервисы считывания значений переменных позволяют считать фактические значения атрибутов данных, например, методом периодического опроса. Сервис передачи отчётов позволяет настроить отправку определенных данных при выполнении определенных условий. Одним из вариантов такого условия может быть изменение того или иного рода, связанное с одним или несколькими элементами из набора данных. Для реализации описанных абстрактных моделей передачи данных в стандарте МЭК 61850 описано назначение абстрактных моделей на конкретный протокол. Для рассматриваемых сервисов таким протоколом является MMS, описанный стандартом ИСО/МЭК 9506.

MMS определяет:
- набор стандартных объектов, над которыми совершаются операции, которые должны существовать в устройстве (например: чтение и запись переменных, сигнализация о событиях и т.д.),
- набор стандартных сообщений. которыми осуществляется обмен между клиентом и севером для осуществления операций управления;
- набор правил кодирования этих сообщений (то есть как значения и параметры назначаются на биты и байты при пересылке);
- набор протоколов (правила обмена сообщениями между устройствами). Таким образом, MMS не определяет прикладных сервисов, которые, как мы уже увидели, определены стандартом МЭК 61850. Кроме того, протокол MMS сам по себе не является коммуникационным протоколом, он лишь определяет сообщения, которые должны передаваться по определенной сети. В качестве коммуникационного протокола в MMS используется стек TCP/IP.

Общая структура применения протокола MMS для реализации сервисов передачи данных в соответствии с МЭК 61850 представлена ниже.


Диаграмма передачи данных по протоколу MMS

Такая достаточно сложная, на первый взгляд, система в конечном счёте позволяет с одной стороны обеспечить неизменность абстрактных моделей (а, следовательно, неизменность стандарта и его требований), с другой - использовать современные коммуникационные технологии на базе IР-протокола. Однако следует отметить, что ввиду большого количества назначений, протокол MMS является относительно медленным (например, по сравнению с GOOSE), поэтому его применение для приложений реального времени нецелесообразно. Основное назначение протокола MMS - реализация функций АСУ ТП, то есть сбор данных телесигнализации и телеизмерений и передача команд телеуправления.
Для целей сбора информации протокол MMS предоставляет две основные возможности:
- сбор данных с использованием периодического опроса сервера(-ов) клиентом;
- передача данных клиенту сервером в виде отчетов (спорадически).
Оба этих способа востребованы при наладке и эксплуатации системы АСУ ТП, для определения областей их применения подробнее рассмотрим механизмы работы каждого.
На первом этапе между устройствами клиентом и сервером устанавливается соединение (сервис «Association»). Установку соединения инициирует клиент, обращаясь к серверу по его IР-адресу.

Механизм передачи данных «клиент-сервер»

Следующим этапом клиент запрашивает определенные данные у сервера и получает от сервера ответ с запрошенными данными. Например, после установки соединения клиент может запросить у сервера его информационную модель с использованием сервисов GetServerDirectory, GetLogicalDeviceDirectory, GetLogicalNodeDiretory. Запросы при этом будут осуществляться последовательно:
- после запроса GetServerDirectory сервер вернёт перечень доступных логических устройств.
- после отдельного запроса GelLogicalDeviceDirectory для каждого логического устройства сервер вернёт перечень логических узлов в каждом из логических устройств.
- запрос GetLogicalNodeDirectory для каждого отдельного логического узла возвращает его объекты и атрибуты данных.
В результате клиент считает и воссоздаст у себя полную информационную модель устройства-сервера. При этом фактические значения атрибутов ещё не будут считаны, то есть считанное «дерево» будет содержать лишь имена логических устройств, логических узлов, объектов данных и атрибутов, но без их значений. Третьим этапом может быть осуществлено считывание фактических значений всех атрибутов данных. При этом могут быть считаны, либо все атрибуты с использованием сервиса GetAllDataValues, либо лишь отдельные атрибуты с использованием сервиса GetDataValues. По завершении третьего этапа клиент полностью воссоздаст у себя информационную модель сервера со всеми значениями атрибутов данных. Следует отметить, что указанная процедура предполагает обмен достаточно большими объёмами информации с большим, зависящим от количества логических устройств логических узлов и числа объектов данных, реализуемых сервером, количеством запросов и ответов. Это также ведёт к достаточно высокой нагрузке на аппаратную часть устройства. Эти этапы могут осуществляться на этапе наладки SCADA-системы для того, чтобы клиент, считав информационную модель, мог обращаться к данным на сервере. Однако при дальнейшей эксплуатации системы регулярное считывание информационной модели не требуется. Равно как нецелесообразно постоянно считывать значения атрибутов методом регулярного опроса. Вместо этого может использоваться сервис передачи отчётов - Report. МЭК 61850 определяет два вида отчетов - буферизируемые и небуферизируемые. Основное отличие буферизируемого отчета от небуферизируемого заключается в том, что при использовании первого формируемая информация будет доставлена до клиента даже в том случае, если на момент готовности выдачи отчета сервером связь между ним и клиентом отсутствует (например, был нарушен соответствующий канал связи). Вся формируемая информация накапливается в памяти устройства и ее передача будет выполнена, как только связь между двумя устройствами восстановится. Единственное ограничение - объем памяти сервера, выделенный для хранения отчетов. Если за тот промежуток времени, когда связь отсутствовала, произошло достаточно много событий, вызвавших формирование большого числа отчетов, суммарный объем которых превысил допустимый объем памяти сервера, то некоторая информация все же может быть потеряна и новые формируемые отчеты «вытеснят» из буфера ранее сформированные данные, однако в этом случае сервер, посредством специального атрибута управляющего блока, просигнализирует клиенту о том, что произошло переполнение буфера и возможна потеря данных. Если же связь между клиентом и сервером присутствует - как при использовании буферизируемого, так и при использовании небуферизируемого отчета - передача данных в адрес клиента может быть немедленной по факту возникновении определенных событий в системе (при условии того, что интервал времени, за которой производится фиксация событий, равен нулю). Когда речь идет об отчетах, подразумевается контроль не всех объектов и атрибутов данных информационной модели сервера, а лишь тех, которые нас интересуют, объединенных в так называемые «наборы данных». Используя буферизируемый/небуферизируемый отчет, можно настроить сервер не только на передачу всего контролируемого набора данных, но и на передачу только тех объектов/атрибутов данных, с которыми происходят определенного рода события за предопределенный пользователем временной интервал.
Для этого в структуре управляющего блока передачей буферизируемых и небуферизируемых отчетов предусмотрена возможность задания категорий событий, возникновение которых необходимо контролировать и по факту которых будет производится включение в отчет только тех объектов/атрибутов данных, которых коснулись эти события. Различают следующие категории событий:
- изменение данных (dchg). При задании этого параметра в отчет будут включаться только те атрибуты данных, значения которых изменились, или только те объекты данных, значения атрибутов которых изменились.
- изменение атрибута качества (qchg). При задании этого параметра в отчет будут включаться только те атрибуты качества, значения которых изменились, или только те объекты данных, атрибуты качества которых изменились.
- обновление данных (dupd). При задании этого параметра в отчет будут включаться только те атрибуты данных, значения которых были обновлены, или только те объекты данных, значения атрибуты которых были обновлены. Под обновлением понимается, к примеру, периодическое вычисление той или иной гармонической составляющей и запись в соответствующий атрибут данных ее нового значения. Однако даже в том случае, если значение по результатам вычислений на новом периоде не изменилось, объект данных или соответствующий атрибут данных включаются в отчет.
Можно также настроить отчет на передачу всего контролируемого набора данных. Такая передача может быть выполнена либо по инициативе сервера (условие integrity), либо по инициативе клиента (general-interrogation). Если введено формирование данных по условие integrity, то пользователю также необходимо указать период формирования данных сервером. Если введено формирование данных по условию general-interrogation. сервер будет формировать отчет со всеми элементами набора данных по факту получения соответствующей команды от клиента.
Механизм передачи отчетов обладает важными преимуществами перед методом периодического опроса («polling»): существенно сокращается нагрузка на информационную сеть, сокращается нагрузка на процессор устройства-сервера и устройства-клиента, обеспечивается быстрая доставка сообщений о возникающих в системе событиях. Однако важно отметить, что всех достоинств использования буферизируемых и небуферизируемых отчетов можно достичь только лишь при правильной их настройке, что, в свою очередь, требует от персонала, выполняющего наладку оборудования, достаточно высокой квалификации и большого опыта.
Помимо описанных сервисов, протокол MMS также поддерживает модели управления оборудованием- формирование и передачу журналов событий, а также передачу файлов, что позволяет передавать, например, файлы аварийных осциллограмм. Указанные сервисы требуют отдельного рассмотрения. Протокол MMS является одним из протоколов, на который могут быть назначены абстрактные сервисы, описанные стандартом МЭК 61850-7-2. При этом появление новых протоколов не будет оказывать влияние на модели, описанные стандартом, обеспечивая, тем самым, неизменность стандарта со временем. Для назначения моделей и сервисов на протокол MMS используется глава МЭК 61850-8-1. Протокол MMS обеспечивает различные механизмы считывания данных с устройств, включая чтение данных по запросу и передачу данных в виде отчётов от сервера клиенту. В зависимости от решаемой задачи должен быть выбран правильный механизм передачи данных и должна быть выполнена соответствующая его настройка, что позволит эффективно применять весь набор коммуникационных протоколов стандарта МЭК 61850 на энергообъекте.

Протокол IEC 61850 GOOSE

Протокол GOOSE, описанный главой МЭК 61850-8-1, является одним из наиболее широко известных протоколов, предусмотренных стандартом МЭК 61850. Дословно расшифровку аббревиатуры GOOSE - Generic Object-Oriented Substation Event - можно перевести как «общее объектно-ориентированное событие на подстанции». Однако на практике не стоит придавать большого значения оригинальному названию, поскольку оно не даёт никакого представления о самом протоколе. Гораздо удобнее понимать протокол GOOSE как сервис, предназначенный для обмена сигналами между устройствами РЗА в цифровом виде.


Формирование GOOSE-сообщений

В модели данных стандарта МЭК 61850 указывается, что данные должны формироваться в наборы - Dataset. Наборы данных используются для группировки данных, которые будут отправляться устройством с использованием механизма GOOSE-сообщения. В дальнейшем, в блоке управления отправкой GOOSE указывается ссылка на созданный набор данных, в таком случае устройство знает, какие именно данные отправлять. Следует отметить, что в рамках одного GOOSE-сообщения может отправляться как одно значение (например, сигнал пуска МТЗ), так и одновременно несколько значений (например, сигнал пуска и сигнал срабатывания МТЗ и т.д.). Устройство-получатель, при этом, может извлечь из пакета лишь те данные, которые ему необходимы. Передаваемый пакет GOOSE-сообщения содержит все текущие значения атрибутов данных, внесённых в набор данных. При изменении какого-либо из значений атрибутов, устройство моментально инициирует посылку нового GOOSE-сообщения с обновлёнными данными.

Передача GOOSE- сообщений

По своему назначению GOOSE-сообщение призвано заменить передачу дискретных сигналов по сети оперативного тока. Рассмотрим какие требования при этом предъявляются к протоколу передачи данных. Для разработки альтернативы цепям передачи сигналов между устройствами релейной зашиты были проанализированы свойства информации, передаваемой между устройствами РЗА посредством дискретных сигналов:
- малый объем информации - между терминалами фактически передаются значения «истина» и «ложь» (или логический «ноль» и «единица»);
- требуется высокая скорость передачи информации - большая часть дискретных сигналов, передаваемых между устройствами РЗА, прямо или косвенно влияет на скорость ликвидации ненормального режима, поэтому передача сигнала должна осуществляться с минимальной задержкой;
- требуется высокая вероятность доставки сообщения - для реализации ответственных функций, таких как подача команды отключения выключателя от РЗА, обмен сигналами между РЗА при выполнении распределенных функций, требуется обеспечение гарантированной доставки сообщения как в нормальном режиме работы цифровой сети передачи данных, так и в случае её кратковременных сбоев;
- возможность передачи сообщений сразу нескольким адресатам - при реализации некоторых распределенных функций РЗА требуется передача данных от одного устройства сразу нескольким;
- необходим контроль целостности канала передачи данных - наличие функции диагностики состояния канала передачи данных позволяет повысить коэффициент готовности при передаче сигнала, тем самым, повышая надёжность функции, выполняемой с передачей указанного сообщения.

Предъявленные требования привели к разработке механизма GOOSE-сообщений, отвечающих всем предъявляемым требованиям. В аналоговых цепях передачи сигналов основную задержку при передаче сигнала вносит время срабатывания дискретного выхода устройства и время фильтрации дребезга на дискретном входе принимающего устройства. Время распространения сигнала по проводнику в сравнении с этим мало.
Аналогично в цифровых сетях передачи данных основную задержку вносит не столько передача сигнала по физической среде, сколько его обработка внутри устройства. В теории сетей передачи данных принято сегментировать сервисы передачи данных в соответствии с уровнями модели OSI, как правило, спускаясь от «Прикладного», то есть уровня прикладного представления данных, к «Физическому», то есть уровню физического взаимодействия устройств. В классическом представлении модель OSI имеет всего семь уровней: физический, канальный, сетевой, транспортный, сеансовый, уровень представления и прикладной. Однако, реализуемые протоколы могут иметь не все из указанных уровней, то есть некоторые уровни могут быть пропущены.
Наглядно механизм работы модели OSI можно представить на примере передачи данных при просмотре WEB-страниц в сети Интернет на персональном компьютере. Передача содержимого страниц в Интернет осуществляется по протоколу HTTP (Hypertext Transfer Protocol), являющемуся протоколом прикладного уровня. Передача данных протокола HTTP обычно осуществляется транспортным протоколом TCP (Transmission Control Protocol). Сегменты протокола TCP инкапсулируются в пакеты сетевого протокола, которым в данном случае выступает IP (Internet Protocol). Пакеты протокола TCP составляют кадры протокола канального уровня Ethernet, которые в зависимости от сетевого интерфейса могут передаваться с использованием различного физического уровня. Таким образом данные просматриваемой страницы в сети Интернет, проходят, как минимум четыре уровня преобразования при формировании последовательности битов на физическом уровне, и затем столько же шагов обратного преобразования. Такое количество преобразований ведёт к возникновению задержек как при формировании последовательности битов с целью их передачи, так и при обратном преобразовании с целью получения передаваемых данных. Соответственно, для уменьшения времени задержек количество преобразований должны быть сведено к минимуму. Именно поэтому данные по протоколу GOOSE (прикладного уровня) назначаются непосредственно на канальный уровень - Ethernet, минуя остальные уровни.
Вообще, главой МЭК 61850-8-1 предусмотрено два коммуникационных профиля, которыми описываются все протоколы передачи данных, предусмотренные стандартом:
- Профиль «MMS»;
- Профиль «Non-MMS» (то есть не-MMS).
Соответственно, сервисы передачи данных могут быть реализованы с использованием одного из указанных профилей. Протокол GOOSE (равно как и протокол Sampled Values) относится именно ко второму профилю. Использование «укороченного» стека с минимальным количеством преобразований - это важный, однако не единственный, способ ускорения передачи данных. Также ускорению передачи данных по протоколу GOOSE способствует использование механизмов приоритезации данных. Так, для протокола GOOSE используется отдельный идентификатор кадра Ethernet - Ethertype, который имеет заведомо больший приоритет по сравнению с остальным трафиком, например, передаваемым с использованием сетевого уровня IP. Помимо рассмотренных механизмов, кадр Ethernet GOOSE-сообщения также может снабжаться метками приоритета протокола IEEE 802.1Q. а также метками виртуальных локальных сетей протокола ISO/IEC 8802-3. Такие метки позволяют повысить приоритет кадров при обработке их сетевыми коммутаторами. Подробнее эти механизмы повышения приоритета будут рассмотрены в последующих публикациях.

Использование всех рассмотренных методов позволяет значительно повысить приоритет данных, передаваемых по протоколу GOOSE, по сравнению с остальными данными, передаваемыми по той же сети с использованием других протоколов, тем самым, сводя к минимуму задержки как при обработке данных внутри устройств источников и приёмников данных, так и при обработке их сетевыми коммутаторами.

Отправка информации нескольким адресатам

Для адресации кадров на канальном уровне используются физические адреса сетевых устройств - МАС-адреса. При этом Ethernet позволяет осуществлять так называемую групповую рассылку сообщений (Multicast). В таком случае в поле МАС-адреса адресата указывается адрес групповой рассылки. Для многоадресных рассылок по протоколу GOOSE используется определенный диапазон адресов.


Диапазон адресов многоадресной рассылки для GOOSE-сообщений

Сообщения, имеющие значение «01» в первом октете адреса, отправляются на все физические интерфейсы в сети, поэтому фактически многоадресная рассылка не имеет фиксированных адресатов, а её МАС-адрес является скорее идентификатором самой рассылки, и не указывает напрямую на её получателей.

Таким образом МАС-адрес GOOSE-сообщения может быть использован, например, при организации фильтрации сообщении на сетевых коммутатора (МАС-фильтрации), а также указанный адрес может служить в качестве идентификатора, на который могут быть настроены принимающие устройства.
Таким образом передачу GOOSE-сообщений можно сравнить с радиотрансляцией: сообщение транслируется всем устройствам в сети, но для получения и последующей обработки сообщения устройство-приёмник должно быть настроено на получение этого сообщения.


Схема передачи GOOSE-сообщений

Передача сообщений нескольким адресатам в режиме Multicast, а также требования к высокой скорости передачи данных не позволяют реализовать при передаче GOOSE-сообщений получение подтверждений о доставке от получателей. Процедура отправки данных, формирования получающим устройством подтверждения, приём и обработка его устройством отправителем и последующая повторная отправка в случае неудачной попытки заняли бы слишком много времени, что могло бы привести к чрезмерно большим задержкам при передаче критических сигналов. В место этого для GOOSE-сообщений был реализован специальный механизм, обеспечивающий высокую вероятность доставки данных.

Во-первых, в условиях отсутствия изменений в передаваемых атрибутах данных, пакеты с GOOSE-сообщениями передаются циклически через установленный пользователем интервал. Циклическая передача GOOSE-сообщений позволяет постоянно диагностировать информационную сеть. Устройство, настроенное на приём сообщения, ожидает его прихода через заданные интервалы времени. В случае, если сообщение не пришло в течение времени ожидания, принимающее устройство может сформировать сигнал о неисправности в информационной сети, оповещая таким образом диспетчера о возникших неполадках.
Во-вторых, при изменении одного из атрибутов передаваемого набора данных, вне зависимости от того, сколько времени прошло с момента отправки предыдущего сообщения, формируется новый пакет, который содержит обновлённые данные. После чего отправка этого пакета повторяется несколько раз с минимальной выдержкой времени, затем интервал между сообщениями (в случае отсутствия изменений в передаваемых данных) вновь увеличивается до максимального.


Интервал между отправками GOOSE-сообщений

В-третьих, в пакете GOOSE-сообщения предусмотрено несколько полей-счётчиков, по которым также может контролироваться целостность канала связи. К таким счётчикам, например, относится циклический счётчик посылок (sqNum), значение которого изменяется от 0 до 4 294 967 295 или до изменения передаваемых данных. При каждом изменении данных, передаваемых в GOOSE -сообщении, счётчик sqNum будет сбрасываться, также при этом увеличивается на 1 другой счётчик - stNum, также циклически изменяющийся в диапазоне от 0 до 4 294 967 295. Таким образом, при потере нескольких пакетов при передаче, эту потерю можно будет отследить по двум указанным счётчикам.

Наконец, в-четвертых, важно также отметить, что в посылке GOOSE, помимо самого значения дискретного сигнала, может также содержаться признак его качества, который идентифицирует определенный аппаратный отказ устройства-источника информации, нахождение устройства-источника информации в режиме тестирования и ряд других нештатных режимов. Таким образом, устройство-приемник, прежде чем обработать полученные данные согласно предусмотренным алгоритмам, может выполнить проверку этого признака качества. Указанное может предупредить неверную работу устройств-приемников информации (например, их ложную работу).
Следует иметь в виду, что некоторые из заложенных механизмов обеспечения надёжности передачи данных при их неправильном использовании могут приводить к негативному эффекту. Так, в случае выбора слишком короткого максимального интервала между сообщениями, нагрузка на сеть увеличивается, хотя, с точки зрения готовности канала связи, эффект от уменьшения интервала передачи будет крайне незначительным.
При изменении атрибутов данных, передача пакетов с минимальной выдержкой времени вызывает повышенную нагрузку на сеть (режим «информационного шторма»), которая теоретически может приводить к возникновению задержек при передаче данных. Такой режим является наиболее сложным и должен приниматься за расчётный при проектировании информационной сети. Однако следует понимать, что пиковая нагрузка очень кратковременна и её многократное снижение, согласно проводившимся нами опытам в лаборатории по исследованию функциональной совместимости устройств, работающих по условиям стандарта МЭК 61850, наблюдается на интервале в 10 мс.

При построении систем РЗА на основе протокола GOOSE изменяются процедуры их наладки и тестирования. Теперь этап наладки заключается в организации сети Ethernet энергообъекта. в которую будут включены все устройства РЗА. между которыми требуется осуществлять обмен данными. Для проверки того, что система настроена и включена в соответствии с требованиями проекта, становится возможным использование персонального компьютера со специальным предустановленным программным обеспечением (Wireshak, GOOSE Monitor и др.) или специального проверочного оборудования с поддержкой протокола GOOSE (PETOM 61850. Omicron CMC). Важно отметить, что все проверки можно производить не нарушая предварительно установленные соединения между вторичным оборудованием (устройствами РЗА, коммутаторами и др.), поскольку обмен данными производится по сети Ethernet. При обмене дискретными сигналами между устройствами РЗА традиционным способом (подачей напряжения на дискретный вход устройства-приемника при замыкании выходного контакта устройства, передающего данные), напротив, часто требуется разрывать соединения между вторичным оборудованием для включения в цепь испытательных установок с целью проверки правильности электрических соединений и передачи соответствующих дискретных сигналов. Таким образом, протокол GOOSE предусматривает целый комплекс мер, направленных на обеспечение необходимых характеристик по быстродействию и надёжности при передаче ответственных сигналов. Применение данного протокола в сочетании с правильным проектированием и параметрированием информационной сети и устройств РЗА позволяет в ряде случаев отказаться от использования медных цепей для передачи сигналов, обеспечивая при этом необходимый уровень надёжности и быстродействия.

#MMS, #GOOSE, #SV, #870-104, #событийный, #протокол, #обмен

Международная электротехническая комиссия создана в 1906 г. на международной конференции, в которой участвовали 13 стран, в наибольшей степени заинтересованных в такой организации. Датой начала международного сотрудничества по электротехнике считается 1881 г., когда состоялся первый Международный конгресс по электричеству. Позже, в 1904 г., правительственные делегаты конгресса решили, что необходима специальная организация, которая бы занималась стандартизацией параметров электрических машин и терминологией в этой области.

После Второй мировой войны, когда была создана ИСО , МЭК стала автономной организацией в ее составе. Но организационные, финансовые вопросы и объекты стандартизации были четко разделены. МЭК занимается стандартизацией в области электротехники, электроники, радиосвязи, приборостроения. Эти области не входят в сферу деятельности ИСО .

Большинство стран-членов МЭК представлены в ней своими национальными организациями по стандартизации (Россию представляет Госстандарт РФ), в некоторых странах созданы специальные комитеты по участию в МЭК, не входящие в структуру национальных организаций по стандартизации (Франция , Германия , Италия, Бельгия и др.).

Представительство каждой страны в МЭК облечено в форму национального комитета. Членами МЭК являются более 40 национальных комитетов, представляющих 80% населения Земли, которые потребляют более 95% электроэнергии, производимой в мире. Официальные языки МЭК - английский, французский и русский.

Основная цель организации, которая определена ее Уставом - содействие международному сотрудничеству по стандартизации и смежным с ней проблемам в области электротехники и радиотехники путем разработки международных стандартов и других документов.

Национальные комитеты всех стран образуют Совет - высший руководящий орган МЭК. Ежегодные заседания Совета, которые проводятся поочередно в разных странах-членах МЭК, посвящаются решению всего комплекса вопросов деятельности организации. Решения принимаются простым большинством голосов, а президент имеет право решающего голоса, которое он реализует в случае равного распределения голосов.

Основной координирующий орган МЭК - Комитет действий. Кроме главной своей задачи - координации работы технических комитетов - Комитет действий выявляет необходимость новых направлений работ, разрабатывает методические документы, обеспечивающие техническую работу, участвует в решении вопросов сотрудничества с другими организациями, выполняет все задания Совета.

В подчинении Комитета действий работают консультативные группы, которые Комитет вправе создавать, если возникает необходимость координации по конкретным проблемам деятельности ТК. Так, две консультативные группы разделили между собой разработку норм безопасности: Консультативный комитет по. вопросам электробезопасности (АКОС) координирует действия около 20 ТК и ПК по электробытовым приборам, радиоэлектронной аппаратуре, высоковольтному оборудованию и др., а Консультативный комитет по вопросам электроники и связи (АСЕТ) занимается другими объектами стандартизации. Кроме того, Комитет действий счел целесообразным для более эффективной координации работы по созданию международных стандартов организовать Координационную группу по электромагнитной совместимости (КГЭМС), Координационную группу по технике информации (КГИТ) и Рабочую группу по координации размеров (рис. 11.2).

Структура технических органов МЭК, непосредственно разрабатывающих международные стандарты, аналогична ИСО : это технические комитеты (ТК), подкомитеты (ПК) и рабочие группы (РГ). В работе каждого ТК участвуют 15-25 стран. Наибольшее число секретариатов ТК и ПК ведут Франция , США, Германия , Великобритания, Италия, Нидерланды. Россия ведет шесть секретариатов.

Международные стандарты МЭК можно разделить на два вида: общетехнические, носящие межотраслевой характер, и стандарты, содержащие технические требования к конкретной продукции. К первому виду можно отнести нормативные документы на терминологию, стандартные напряжения и частоты, различные виды испытаний и пр. Второй вид стандартов охватывает огромный диапазон от бытовых электроприборов до спутников связи. Ежегодно в программу МЭК включается более 500 новых тем по международной стандартизации.

Основные объекты стандартизации МЭК:

Материалы для электротехнической промышленности (жидкие, твердые, газообразные диэлектрики , медь , алюминий , их сплавы , магнитные материалы);

Электротехническое оборудование производственного назначения (сварочные аппараты, двигатели, светотехническое оборудование, реле, низковольтные аппараты, кабель и др.);

Электроэнергетическое оборудование (паровые и гидравлические турбины, линии электропередач, генераторы, трансформаторы);

Изделия электронной промышленности (интегральные схемы, микропроцессоры, печатные платы и т.д.);

Электронное оборудование бытового и производственного назначения;

Электроинструменты;

Оборудование для спутников связи;

Терминология.

МЭК принято более 2 тыс. международных стандартов. По содержанию они отличаются от стандартов ИСО большей конкретикой: в них изложены технические требования к продукции и методам ее испытаний, а также требования по безопасности, что актуально не только для объектов стандартизации МЭК, но и для важнейшего аспекта подтверждения соответствия - сертификации на соответствие требованиям стандартов по безопасности. Для обеспечения этой области, имеющей актуальное значение в международной торговле, МЭК разрабатывает специальные международные стандарты на безопасность конкретных товаров. В силу сказанного, как показывает практика, международные стандарты МЭК более пригодны для прямого применения в странах-членах, чем стандарты ИСО .

Придавая большое значение разработке международных стандартов на безопасность, ИСО совместно с МЭК приняли Руководство ИСО /МЭК 51 "Общие требования к изложению вопросов безопасности при подготовке стандартов". В нем отмечается, что безопасность представляет собой такой объект стандартизации, который проявляет себя при разработке стандартов во многих различных формах, на разных уровнях, во всех областях техники и для абсолютного большинства изделий. Сущность понятия "безопасность" трактуется как обеспечение равновесия между предотвращением опасности нанесения физического ущерба и другими требованиями, которым должна удовлетворять продукция. При этом следует учитывать, что абсолютной безопасности практически не существует, поэтому даже находясь на самом высоком уровне безопасности, продукция может быть лишь относительно безопасной.

При производстве продукции принятие решений, связанных с обеспечением безопасности, основывается обычно на расчетах рисков и оценке степени безопасности. Оценка риска (или установление вероятности причинения вреда) базируется на накопленных эмпирических данных и научных исследованиях. Оценка степени безопасности сопряжена с вероятным уровнем риска, и нормы безопасности почти всегда устанавливаются на государственном уровне (в ЕС - посредством Директив и технических регламентов; в РФ - пока обязательными требованиями государственных стандартов). Обычно на сами нормы безопасности влияет уровень социально-экономического развития и образованности общества. Риски зависят от качества проекта и производственного процесса, а также, в не меньшей степени, от условий использования (потребления) продукта.

Базируясь на такой концепции безопасности, ИСО и МЭК полагают, что обеспечению безопасности будет способствовать применение международных стандартов, в которых установлены требования безопасности. Это может быть стандарт, относящийся исключительно к области безопасности либо содержащий требования безопасности наряду с другими техническими требованиями. При подготовке стандартов безопасности выявляют как характеристики объекта стандартизации, которые могут оказать негативное воздействие на человека, окружающую среду , так и методы установления безопасности по каждой характеристике продукта. Но главной целью стандартизации в области безопасности является поиск защиты от различных видов опасностей. В сферу деятельности МЭК входят: травмоопасность, опасность поражения электротоком, техническая опасность, пожароопасность, взрывоопасность , химическая опасность, биологическая опасность, опасность излучений оборудования (звуковых, инфракрасных, радиочастотных, ультрафиолетовых, ионизирующих, радиационных и др.).

Процедура разработки стандарта МЭК аналогична процедуре, используемой в ИСО . В среднем над стандартом работают 3-4 года, и нередко он отстает от темпов обновления продукции и появления на рынке новых товаров. С целью сокращения сроков в МЭК практикуется издание принятого по короткой процедуре Технического ориентирующего документа (ТОД), содержащего лишь идею будущего стандарта. Он действует не более трех лет и после публикации созданного на его основе стандарта аннулируется.

Применяется также ускоренная процедура разработки, касающаяся, в частности, сокращения цикла голосования, и, что более действенно - расширения переоформления в международные стандарты МЭК нормативных документов, принятых другими международными организациями, либо национальных стандартов стран-членов. Ускорению работы по созданию стандарта содействуют и технические средства: автоматизированная система контроля за ходом работы, информационная система "Телетекст", организованная на базе Центрального бюро. Пользователем этой системы стали более 10 национальных комитетов.

В составе МЭК несколько особый статус имеет Международный специальный комитет по радиопомехам (СИСПР), который занимается стандартизацией методов измерения радиопомех, излучаемых электронными и электротехническими приборами. Допустимые уровни таких помех являются объектами прямого технического законодательства практически всех развитых стран. Сертификация подобных приборов проводится на соответствие стандартам СИСПР.

В СИСПР участвуют не только национальные комитеты, но и международные организации: Европейский Союз радиовещания, Международная организация радио и телевидения, Международный союз производителей и распределителей электротехнической энергии, Международная конференция по большим электротехническим системам, Международный Союз железных дорог, Международный союз общественного транспорта, Международный союз по электротермии. В качестве наблюдателей в работе комитета участвуют Международный комитет по радиосвязи и Международная организация гражданской авиации. СИСПР разрабатывает как нормативные, так и информационные международные документы:

международные стандарты технических требований, которые регламентируют методики измерения радиопомех и содержат рекомендации по применению измерительной аппаратуры;

доклады, в которых представляются результаты научных исследований по проблемам СИСПР.

Наибольшее практическое применение имеют международные стандарты, в которых установлены технические требования и предельные уровни радиопомех для различных источников: автотранспортных средств, прогулочных судов , двигателей внутреннего сгорания, люминесцентных ламп, телевизоров и т.п.

Настоящее время является периодом прорыва в сфере развития цифровых технологий, наряду с этим исключением не является электротехническое оборудование, работу которого все время пытаются усовершенствовать производители. Все новые разработки должны соответствуют международному стандарту качества ИСО, но, тем не менее, отечественные производители были заинтересованы в собственном стандарте качества и такой был создан – это МЭК 61850, который характеризует системы и сети электроподстанций.

Предистория создания стандарта МЭК 61850

Компьютерные технологии идут нога в ногу с электрическими сетями, от надежности которых зависит их дальнейшая эффективная функциональность. В 2003 году новый отечественный стандарт, о котором идет речь, был представлен как необходимость современности, хотя его целесообразность оговаривалась еще в далеких шестидесятых. Основная суть, заложенная в стандарт, заключается в применении специальных протоколов, с помощью которых удается управлять электрическими сетями, как таковыми. Именно за счет их внедрения удается сегодня выполнять слежку за беспрерывным функционированием всех электросетей.

Внедрение на практике стандарт МЭК 61850 привело к тому, что разработчики компьютерного оборудования стали уделять внимание не только его модернизации, но и способствовать созданию систем, которые позволяют быстро и качественно выявить возможные неполадки, с которыми сталкивается конечный пользователь компьютерной техники.

Испытание стандарта МЭК 61850

Применяемый протокол стандартизации прошел испытание в восьмидесятых годах. Тогда были протестированы такие его модификации, как МЭК 61850-1, она оказалась безрезультатной. В отечественный просторах было остановлено испытание, а вот в западной Европе эту модификацию взяли за основу создания протокола UCA2, который приобрел весьма широкую популярность в девяностых годах.

Как работает отечественный стандарт МЭК 61850?

Давайте немного поговорим о том, что же на самом деле представляет собой МЭК 61850 и как он работает. Люди, начинающие осваивать компьютер вряд ли знают, что это такое.

Основная суть стандарта заключается в том, что в эксплуатируемую подстанцию внедряется микропроцессорный чип, обуславливающий передачу данных о работоспособности всей системы на центральный пункт, называемый терминалом, который и осуществляет основное управление сетью. Речь идет о высокоскоростном соединении. Иными словами, осуществляется сцепление чипа с ЛВС ближайшего типа.

Так называемая DAS – система сбора информации работает на основе 64-битной передачи, при этом используется определенный алгоритм зашифровки данных. На протяжении испытаний было установлено, что эти условия работы системы в принципе тоже являются весьма уязвимыми. Эта уязвимость имеет глобальный характер. Поломка в одном месте выводит из строя всю линию, как в сюжетах интересных американских триллеров. Если уж гаснет свет, то во всем квартале сразу.

Управлять электросетями, благодаря протоколу стандарта МЭК 61850 можно посредством любого источника извне, почему будет рассмотрено немного ниже. Ну, а сейчас перейдем к системным требованиям протокола МЭК 61850.

Отечественный стандарт управления электросетями – основные системные требования

Рассматриваемый протокол был широко применим в линиях телефонной связи, то есть сигнал передавался посредством них непосредственно к центру. Сегодня разработки шагнули далеко вперед. Современные модели чипов передают данные независимо от провайдеров, которые и предоставляют стандартную услугу подключения к той или иной линии связи.

Встроенный в систему чип работает на основании собственного протокола, не привязываясь к общепринятому стандарту TCP/IP. Однако это еще не все особенности отечественного стандарта управления сетями.

Так вот сам стандарт и является протоколом передачи данных, который использует чип, он имеет при этом защищенное соединение. То есть он может беспрепятственно подключаться к Интернету, мобильной связи и прочим видам передачи данных. Используемый специфический способ передачи данных стал востребованным в наши дни, как никогда ранее.

В настройках протокола передачи данных задействованы параметры безопасные параметры прокси-серверов.

Сфера применения стандарта МЭК 61850

Где применим на практике созданный стандарт? Естественно, что согласно требованиям ГОСТ он не может быть практически применен в обычной трансформаторной будке. Для этого как минимум нужно было бы обеспечить наличие системы ввода-вывода БИОС и коммуникацию для передачи данных.

Но вот если применять чип в центре управленческого элемента общей сетью, то можно получить доступ к функционалу абсолютно всех электростанций, которые включены в сеть. Если показать это на примере, то лучшим вариантом является фантастический фильм «Земное ядро», в сюжетной линии которого хакеру удается вывести из строя все электростанции, отвечающие за подпитку ядра планеты.

Многие могут спросить о том, причем здесь фантастика. Однако именно о таком фантастическом функционале и подмывали создатели стандарта МЭК 61850, хотя на эту тему впрямую вряд ли кто-то говорит. Но примитивный механизм работы оного показывает именно такую модель действий. Благодаря внедрению такой виртуализации можно было бы избежать многих земных катастроф, с которыми пришлось столкнуться человечеству в современное время. Да хотя бы оценить масштабы катастрофы, произошедшей на Чернобыльской атомной электростанции. Ведь ее можно было бы избежать, если в систему еще тогда был внедрен, пусть и примитивный, стандарт МЭК 61850-1.

Последствия происшествия оказались куда масштабнее, чем предполагалось. Сегодня мало кто уже вспоминает о трагедии, но она все равно продолжает действовать, ведь период распада плутония и урана не происходит за несколько десятков лет.

А вот применение стандарта могло позволить избежать катастрофы, если бы он был вовремя внедрен в системы станции.

Как происходит моделирование реальных протоколов, их преобразование

Все сети являются проводными. Но сами железные провода не передают никаких сигналов. Для этой цели в систему встраиваются специальные ретрансляторы, которые способны принимать информацию и ее расшифровывать. Вот по этому принципу и работает стандарт МЭК 61850.

Прием сигнала является простейшим действием. Но для того, чтобы его расшифровать, требуется немало усилий.

При использовании в сети протокола МЭК 61850 для расшифровки сигналов используются такие системы как P3A, SCADA, называемые системами визуализации. Они применяют проводные средства для считывания получаемых сигналов, поэтому основными протоколами, обуславливающими их работу, являются MMS, GOOSE, которые не имеют ничего общего с мобильным трафиком.

Сперва в ход вступает MMS, после чего наступает очередь GOOSE, что в итоге дает возможность сделать информацию отображаемой благодаря Р3А.

Конфигурации подстанций – основные виды

Подстанции, работающие с рассматриваемым протоколом, должны обладать минимальным набором элементов для передачи сигналов. А это ничто иное, как использование физического устройства с логическими модулями. То есть само устройство должно концентрировать информацию за счет шлюза или некого посредника, передающего данные. Так называемые логические узлы перераспределения информации могут относиться к определенному классу, это могут быть:

  • автоматизированные системы управления (А);
  • измерительные системы (М);
  • управление телеметрическое (С);
  • параметры настройки или модули общего функционала (G);
  • архивация данных или средства установки связи (I);
  • системные сегменты (L);
  • датчики (S);
  • трансформаторные подстанции (Т);
  • коммуникационная блочная аппаратура (Х);
  • защита (P);
  • сеть защитных элементов (R)…

При внедрении протокола МЭК 61850 при создании сетевых линий применимо меньшее количество проводов и кабеля, что является приемлемым преимуществом его использования. Однако, несмотря на возможность расшифровки данных и своевременную их передачу, на практике все же удается не всю информацию считать даже при использовании современных программных приложений. Разработчики МЭК 61850 считают, что это временная актуальна задача, решение которой найдется в скором времени.

Программное обеспечение стандартного протокола

Несмотря на некоторое несовершенство сопоставления стандарта МЭК с современными программными приложениями, это не дает повода не использовать его эффективно в операционных системах любого вида и даже в мобильной, заметьте. Почему используют МЭК? Да потому что он дает возможность тратить на обработку поступающей информации гораздо меньше времени, чем это происходило без него. Речь идет о простейшей информации локальных сетей с последующей ее расшифровкой. Такие системы очень широко применимы и главный их недостаток – высокая стоимость, поскольку они применяют оборудование Р3А, то есть считаются так называемыми микропроцессорными системами.

Все, о чем говорилось выше – это сплошная теория фактов, как же все работает на самом деле?

Тестирование работы МЭК 61850 на практике

Давайте детально разберем принцип работы МЭК на конкретном примере, чтобы в итоге понять смысл и необходимость его применения.

Давайте возьмем за основу силовую подстанцию, обладающую трехфазным питанием и несколькими измерительными входами, к примеру, двумя. Пусть стандартный логический узел называется MMXU. В таком случае мы имеем дело с MMXU1 и MMXU2.

Каждый из них может включать еще и некий дополнительный префикс. Основные элементы, которые будут входить в каждый из узлов:

  • подсчет выполняемых операций (OpCnt);
  • определение местоположения в сети – удаленного или локального (Loc);
  • оператор сети (Pos);
  • включение блокировки (BlkCls);
  • отключение блокировки (BlkOpn);
  • срабатывание режима переключения (CBOpCap).

Итак, мы имеем дело с системой модифицированной версии 7-3, конфигурация которой имеет ряд признаков:

  • наличие одной контрольной точки;
  • ограничения функционала;
  • расширенное определение наделенных параметров системы.

Логический процесс обработки информации системой – приема и ее расшифровки – включает такие составляющие, как качество (q), время (t) и свойства (stVal). В итоге выходит подключение типа Ethernet, которое использует эффективно протоколы TCP, IP с интерпретацией информации в MMS, что дает в итоге информацию считать в виде визуализированных данных.

Стандартный протокол МЭК 61850 – это абстрактная модель обработки и передачи информации, как таковой. Но именно он является основой всех происходящих в сети процессов передачи информации. А это позволят электронным чипам видеть все устройства создаваемых и существующих сетей, даже те, которые подключены к системе энергосбережения.

Теория создания протокола заключается в том, что используемый механизм можно преобразовать в любой тип электронных данных, если речь идет о стандарте MMS и ISO 9506. Почему тогда на практике речь зашла именно о новом стандарте МЭК? Оказалось, что именно МЭК снижает затраты времени при необходимости передачи и расшифровки любых данных. Тогда как привычные методики являются более трудоемкими и бюджетнозатратными.

Верификация данных – ответы на основные вопросы

Применение стандарта МЭК подразумевает не только прием и передачу зашифрованной информации. Встраиваемые в энергосети электронные чипы позволяют выполнять обмен информационными данными и на уровне подстанций, и на уровне центральных систем управления, и даже между собой, если задействовать специальное дополнительное оборудование в сети.

К примеру, чип считывает данные о сите напряжения на определенном участке. На основе получаемой информации другие участки сети либо отключают питание, либо пытаются выпрямить напряжение, задействуя для этого специальные резервы. Успешность этого мероприятия все же в большей мере зависит от уровня скачка напряжения. Если стандарт 220 Вольт или 230 Вольт по европейским меркам, то допустимый предел изменений либо 15 %, либо 5% соответственно. Теперь становится понятным, почему импортная техника при незначительным по нашим меркам перепадам напряжения выходит из строя.

Естественно, что конечный потребитель электроприборов не имеет защиты от таких казусов, поскольку практически в каждом дворе эксплуатируется трансформаторная будка советских времен, которая ничего общего с чипам не имеет и иметь не может.

Отечественные энергосбыты не могут широко применять существующий отечественный протокол МЭК 61850, хотя он уже существует в силу несовершенного оборудования линий электропередача. Причем речь идет не просто о несовершенстве оборудования, но и возможном банкротстве оных при внедрении системы, которая урежет большую часть потребления населением электротехнической продукции. Вот вам и вся невыгода внедрения и реализации стандарта на практике как такового.

Подведем итоги

Теоретически сам отечественный стандартный протокол прост, но практически – очень сложен. Проблемы заключаются не в отсутствии необходимого совершенного программного обеспечения, а в том, что вся сегодня работающая энергосистема страны функционирует по принципам советского времени и совсем не приспособлена к каким-либо изменениям. Если придется менять что-то в отношении повсеместного распространения МЭК, то придется менять абсолютно все и вся.

В придачу к этому добавляется низкая квалификация тех лиц, которые обслуживают все участки энергоснабжения, поэтому что-то говорить о повсеместном внедрении электроники пока что очень рано. Менталитет наших электриков – устранять проблемы как можно позже и причем некачественно, обеспечивая постоянный рабочий процесс – сегодня, завтра, послезавтра…

Если бы на практике был применим стандарт МЭК, то причина поломок устранялась именно в месте поломки, а все остальные участки оставались жизнеспособными. А так выполняется отключение всего микрорайона или города.

Для конечного потребителя энергоресурса МЭК 61850 – это беспрерывное энергоснабжение. Представляете, что такое в принципе возможно? При этом о перепадах напряжения в сети можно было бы забыть навсегда. А это сохранение работоспособности бытовой и компьютерной техники, которые очень чувствительны к таким вот непредсказуемым сюрпризам электросетей. Тогда бы речь ни шла об эксплуатации бесперебойников питания, стабилизаторов напряжения в принципе.

Сейчас люди сталкиваются не только с поломками бытовой техники в результате скачков напряжения тока, но и с выходом проводки по всему дому.

Но пока идут теоретические и практические дебаты целесообразности расширения горизонтов внедрения отечественного протокола МЭК 61850, никто не предпринимает никаких телодвижений в направлении что-то сдвинуть с места, а конкретно изменить систему энергоподачи электричества на корню.

Сам протолок МЭК рассчитан на эффективный поиск участков поломок и устранение дефектов в пределах оных, не затрагивая иные участки энергосетей. Логический принцип стандарта вполне понятен, то при этом понятна и логика того, почему так мало уделяется внимания его внедрению в жизнь.

На данный момент рассчитана как выгода его применения, так и будущие убытки, связанные с его внедрением. Пока что стандартному устою энергопредприятий этот протокол весьма невыгоден. От его реализации выигрывает лишь конечный потребитель энергоресурса.