Волновая энергетика: прилив сил. Волновая электростанция

Использование: к гидроэнергетике, преобразование энергии волн в электрическую энергию. Сущность изобретения: волновой генератор содержит опору, вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн в виде вертикального вала, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия. Новым является то, что в конструкции имеются второй вертикальный цилиндрический корпус, электрогенератор, волноприемные отверстия, причем второй вертикальный цилиндрический корпус подвижно связан с первым корпусом посредством вертикального вала, жестко соединенного с крышкой второго корпуса, и на валу жестко посажен магнитный кольцевой ротор электрогенератора, а статор жестко соединен с днищем первого корпуса, который связан с опорой, причем вертикальные тангенциально расположенные щелевые отверстия второго корпуса направлены в сторону противоположную таким же отверстиям первого корпуса. 3 ил.

Изобретение относится к гидроэнергетике и может быть использовано во всех отраслях народного хозяйства для создания дополнительных источников энергии. Известен волновой двигатель, содержащий вертикальный корпус с волноприемным отверстием, клапан и преобразователь энергии волн, где корпус выполнен цилиндрическим с крышкой и днищем, волноприемное отверстие выполнено в днище, клапан выполнен обратным и установлен в отверстии, преобразователь представляет собой вертикальный вал и жестко соединен с крышкой корпуса, при этом в нижней части боковой стенки корпуса выполнены вертикальные тангенциально расположенные щелевые отверстия. Недостатком известной конструкции является низкий КПД. Техническим результатом изобретения является повышение КПД. Технический результат достигается тем, что в волновом генераторе, содержащем вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн в виде вертикального вала, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия, отличающийся тем, что дополнительно содержит второй вертикальный цилиндрический корпус, электрический генератор, опору, волноприемные отверстия, причем второй вертикальный цилиндрический корпус подвижно связан с первым корпусом посредством вертикального вала, жестко соединенного с крышкой второго корпуса, и на валу жестко посажен ротор генератора, а статор жестко соединен с днищем первого корпуса, который связан с опорой, причем вертикальные тангенциально расположенные щелевые отверстия второго корпуса направлены в сторону, противоположную таким же отверстиям первого корпуса. На фиг.1 показан волновой генератор; на фиг.2 и 3 первый и второй соответственно цилиндрические корпуса, разрез. Волновой генератор содержит вертикальный цилиндрический корпус 1 с крышкой и днищем, в котором выполнено волноприемное отверстие 2, обратный клапан 3 и преобразователь энергии волн в виде вертикального вала 4, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия 5. Основными отличительными признаками являются второй вертикальный цилиндрический корпус 6, электрогенератор 7, опора 8, волноприемные отверстия 9, причем второй вертикальный цилиндрический корпус 6 подвижно связан с первым корпусом 1 посредством вертикального вала 10, жестко соединенного с крышкой второго корпуса, и на валу 10 жестко посажен магнитный кольцевой ротор 11 электрогенератора 7, а статор 12 жестко соединен с днищем первого корпуса 1, который связан с опорой 8, причем вертикальные тангенциально расположенные щелевые отверстия 13 второго корпуса 6 направлены в сторону, противоположную таким же отверстиям 5 первого корпуса 1. Волновой генератор устанавливается на некоторую глубину и работает следующим образом. При увеличении гидростатического давления возрастает давление и внутри вертикальных корпусов 1 и 6. Через обратные клапана 3, установленные в волноприемных отверстиях 2 и 9 вода вливается в корпуса 1 и 6 и приводит к уменьшению объема воздушных зазоров, которые образуются при установке генератора на глубину и находятся в верхних частях корпусов 1 и 6. Далее при спаде гидростатического давления под действием упругих сил сжатого воздуха вода с реактивной силой выбрасывается через тангенциально направленные щелевые отверстия 5 и 13, что вызывает вращательное движение корпусов 1 и 6, а следовательно, магнитного кольцевого ротора электрогенератора 11 и статора 12, причем они вращаются в противоположные друг от друга стороны, так как. вертикальные тангенциально направленные щелевые отверстия 5 и 13 корпусов 1 и 6 направлены в противоположные стороны относительно друг друга. При этом магнитные силовые линии ротора 11, пронизывая обмотку статора 12, наводят в них ЭДС. Если обмотку статора замкнуть через внешнюю цепь, то в этой цепи, а также в обмотках статора 12 возникает ток.

Формула изобретения

Волновой генератор, содержащий опору, вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн, выполненный в виде вертикального вала, жестко соединенного с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия, отличающийся тем, что он снабжен электрическим генератором и вторым вертикальным цилиндрическим корпусом с волноприемными и вертикальными тангенциально расположенными щелевыми отверстиями, причем второй корпус подвижно связан с первым посредством дополнительного вертикального вала, жестко соединенного с крышкой второго корпуса, на дополнительном валу жестко закреплен магнитный кольцевой ротор электрического генератора, статор которого соединен с днищем первого корпуса, связанного с опорой, при этом щелевые отверстия второго корпуса направлены в сторону, противоположную щелевым отверстиям первого корпуса.

Проект московского физика Александра Темеева победил в международном конкурсе альтернативных источников энергии.

Российские ученые стали победителями международного конкурса Energy Globe в номинации "Национальный проект от России". Это соревнование в области использования возобновляемых источников энергии и охраны окружающей среды проводится Международным фондом Energy Globe совместно с Европейской комиссией.

Наука давно ищет, чем заменить быстро сокращающиеся запасы углеводородов. Возможностей много - Солнце, ветер, приливы, горячие подземные источники, волны. Их общая мощность намного превосходит все, что запасено в недрах Земли. Но взять эту энергию непросто: она слишком рассеяна, а потому обходится куда дороже, чем от сжигания нефти, газа и даже угля.

Казалось бы, очень перспективно использование волн в тех акваториях, где море всегда неспокойно. Ведь концентрация энергии в волнах в десятки раз выше по сравнению с другими возобновляемыми источниками. Не случайно во многих странах давно пытаются приручить водную стихию. Скажем, в Шотландии уже затратили свыше 70 миллионов долларов на создание волновой 150-метровой электростанции с четырьмя цилиндрами-поплавками, каждый длиной более 30 метров. Качаясь на волнах, поплавки вращают турбины генераторов.

Увы, станция так и не доведена до стадии эксплуатации. Дело в том, что у волн капризный характер. Чтобы отобрать у них энергию, поплавок должен иметь размеры, сравнимые с длиной морской волны. Но она крайне непостоянна, может то резко увеличиться, то надолго снизить свою силу, а то вовсе пропасть.

Значит, при заданных размерах поплавок будет откликаться и отбирать энергию только у вполне определенных волн, не замечая другие. То есть кпд такой системы крайне мало.

Нам удалось устранить этот недостаток, - говорит руководитель группы ученых, создавших уникальную волновую электростанцию, кандидат технических наук Александр Темеев. - Суть в следующем. В каждый поплавок мы поместили колебательное устройство, проще говоря, маятник. Он взаимодействует с волной, создавая резонанс, что позволяет отбирать энергию с высоким кпд, достигая даже 70 процентов. В принципе мощность таких волновых станций может достигать десятков мегаватт.

Проектом российских ученых заинтересовались энергетики многих стран, предложения о сотрудничестве приходят из Норвегии, Великобритании, Дании, Испании, Италии, Китая и т.д. По оценкам, стоимость электроэнергии будет составлять не более 2 рублей за кВт/ч, а капитальные затраты на сооружение электростанций окупятся за два года.

В России поплавковые электростанции наиболее перспективны в незамерзающих акваториях Баренцева моря, а в качестве регионального или сезонного источника энергии - на Черном, Каспийском и дальневосточных морях.

Воды Мирового океана скрывают в себе несметные богатства, главными из которых, пожалуй, являются безграничные источники энергии в виде морских волн. Впервые об использовании кинетической энергии накатывающихся на берег валов задумались в 18 веке в Париже, где был представлен первый патент на волновую мельницу. Сейчас технологии шагнули далеко вперед, и совместными усилиями ученых была создана первая коммерческая волновая электростанция, которая начала эксплуатироваться в 2008 году.

Почему это выгодно?

Ни для кого не секрет, что природные богатства находятся на грани истощения. Запасы угля, нефти и газа - основных энергетических источников - подходят к концу. По самым оптимистичным прогнозам ученых, запасов хватит для 150-300 лет жизни. Атомная энергетика тоже не оправдала ожиданий. Большая мощность и производительность окупают затраты на строительство, эксплуатацию, но проблемы захоронения отходов и нанесения ущерба окружающей среде скоро заставят отказаться и от них. По этим причинам ученые ищут новые Сейчас уже действуют ветровые и солнечные электростанции. Но при всех своих достоинствах они имеют существенный недостаток - низкий КПД. Удовлетворить потребности всего населения не удастся. Поэтому необходимы новые решения.

Для выработки электричества волновая электростанция использует кинетическую энергию волн. По самым скромным подсчетам, этот потенциал оценивается в 2 млн МВт, что сравнимо с 1000 работающих на полную мощность атомных электростанций, а на один метр фронта волны приходится около 75 кВт/м. При этом не наблюдается абсолютно никакого вредного воздействия на окружающую среду.

Общая схема работы

Волновыми электростанциями называют плавучие сооружения, которые способны преобразовывать движения волн в электрическую и передавать ее потребителю. При этом стараются использовать два источника:

  1. Кинетические запасы. Морские валы проходят через трубу большого диаметра и вращают лопасти, которые передают усилие на электрогенератор. Применяется и пневматический принцип - вода, проникая в специальную камеру, вытесняет оттуда кислород, который перенаправляется по системе каналов и вращает лопасти турбины.
  2. Энергия качения. В этом случае волновая электростанция выступает в роли поплавка. Перемещаясь в пространстве вместе с профилем волны, она посредством сложной системы рычагов заставляет вращаться турбину.

Разными странами используются свои собственные технологии преобразования механического движения волн в электричество, но общая схема действия у них одинаковая.

Недостатки волновых электростанций

Главным препятствием на пути к обширному внедрению волновых электростанций является их стоимость. Из-за сложной конструкции и сложной установки на поверхность морских вод затраты на внедрение подобных установок в эксплуатацию выше, чем на строительство АЭС или ТЭС.

Кроме того, наблюдается и ряд других недостатков, которые в основном связаны с появлением социально-экономических проблем. Дело все в том, что крупные поплавковые станции создают опасность и мешают мореходству и рыболовству - поплавковая волновая электростанция может просто вытеснить человека из промысловых зон. Возможны и экологические последствия. Использование установок значительно гасит морские валы, делает их меньше и не дает пробиться на берег. Между тем волны играют важную роль в процессе газообмена океана, очищения его поверхности. Все это может привести к смещению экологического равновесия.

Положительные стороны волновых электростанций

Вместе с недостатками волновая электростанция имеет и ряд преимуществ, которые оказывают положительное воздействие и на деятельность человека:

  • установки, благодаря тому что гасят энергию волны, могут защищать прибрежные сооружения (причалы, порты) от разрушения силой океана;
  • выработка электричества происходит с минимальными затратами;
  • высокая мощность волнения делает ВЭС экономически более выгодными, нежели ветровые или солнечные электростанции.

Запасами энергии обладают и воды суши, главным образом реки. Сооружение станций на мостах, переправах, причалах является перспективой развития этой области выработки электроэнергии.

Проблемы, которые надо решить

Основная задача, которая стоит перед научным сообществом сейчас, - это совершенствование конструкции, что позволит снизить себестоимость электричества, которое вырабатывают волновые электростанции. Принцип работы должен остаться тем же, но применяться для создания установок будут уже новые технологии и материалы.

Средняя мощность волны составляет 75-85 кВт/м - именно на такой диапазон настраиваются большинство станций. Однако во время шторма сила морских валов увеличивается в несколько раз и создается опасность разрушения установок. Уже не одна лопасть была смята или погнута после шторма. Для решения этой проблемы ученые искусственными методами снижают удельную мощность волн. Одна из проблем состоит в том, что массовое использование волновых станций приведет к изменению климата. Генерация электрической энергии осуществляется за счет вращения Земли (именно так образуются волны). Повсеместное использование станций заставит планету вращаться медленнее. Человек разницу не почувствует, но это уничтожит ряд течений, которые играют важную роль в теплообмене Земли.

Первая в мире опытная ВЭС

Первая волновая электростанция появилась в 1985 году в Норвегии. Ее мощность составила 500 кВт, а сама она представляла собой опытный образец. Ее принцип действия основан на циклическом сжатии и расширении среды:

  • цилиндр с открытым дном погружен в воду так, чтобы его край был ниже ложбины волны - самой нижней ее точки;
  • периодически набегающая вода сжимает воздух во внутренней полости;
  • по достижении определенного давления открывается клапан, который дает проход сжатому кислороду к турбине.

Такая электростанция вырабатывала 500 кВт энергии, чтобы было достаточно для подтверждения действенности установок, что способствовало их развитию.

Первая в мире промышленная электростанция

Первой в мире установкой промышленного масштаба считается Oceanlinx в акватории Порт-Кембл, в Австралии. Она введена в эксплуатацию в 2005 году, но затем была отправлена на реконструкцию и в 2009 году вновь заработала, из-за чего в регионе теперь используются и приливные, и волновые электростанции. Ее принцип действия состоит в следующем:

  1. Волны периодически забегают в специальные камеры, заставляя сжиматься воздух.
  2. По достижении критического давления через сеть каналов вращает электрогенератор.
  3. Для улавливания движения и силы волн лопасти турбины меняют свой угол наклона.

Мощность установки составила порядка 450 кВт, хотя каждая секция станции способна выдавать от 100 кВт*ч до 1,5 МВт*ч электрической энергии.

Первая в мире коммерческая ВЭС

Первая волновая электростанция коммерческого назначения заработала в 2008 году в Агусадоре, Португалия. Более того, она первая в мире установка, которая использует непосредственно механическую энергию волны. Проект подготовила английская компания Pelamis Wave Power.

В состав конструкции входит несколько секций, которые отпускаются и поднимаются вместе с профилем волны. Секции шарнирно скреплены с гидравлической системой и во время движения приводят ее в действие. Гидравлический механизм заставляет вращаться ротор генератора, благодаря чему и вырабатывается электроэнергия. Используемые в Португалии волновые электростанции плюсы и минусы имеют. Преимущество установки заключается в большой мощности - около 2,25 МВт, а также в возможности установки дополнительных секций. Недостаток установки системы один - возникает сложности с по проводам к потребителю.

Первая в России волновая электростанция

В России первая ВЭС появилась в 2014 году в Приморском крае. Разработкой занимался коллектив ученых из и Тихоокеанского океанологического института ДВО РАН. Установка имеет экспериментальный характер. Ее особенность в том, что она использует энергию не только волн, но и приливов/отливов.

В Москве предполагается строительство научно-исследовательской лаборатории, которая займется разработкой и созданием первой отечественной поплавковой станции. Возможно, после этого волновые электростанции в России тоже будут иметь промышленное или коммерческое назначение.

В наши дни основными источниками энергии являются углеводороды – нефть, уголь, газ. Согласно прогнозам аналитиков запасов угля при современных уровнях добычи хватит на 400 лет, а запасы нефти и газа закончатся через 40 и 60 лет соответственно. Такое стремительное уменьшение объема природных богатств ставит задачу поиска альтернативных способов получения энергии.

Одним из перспективных направлений является волновая энергетика.

Общее устройство волновых станций

Волновой электростанцией (ВЭС) называют сооружение, расположенное на воде, которое преобразовывает механическую энергию волн в электрическую.

При строительстве ВЭС учитывают два фактора.

  • Кинетическая энергия волн. Волны, поступающие в трубу огромного диаметра, вращают турбинные лопасти, которые приводят в движение генератор. Иногда действует иной принцип: волна, проходя через полую камеру, выталкивает сжатый воздух, заставляя турбину вращаться.
  • Энергия поверхностного качения. В этом случае выработка электроэнергии происходит посредством преобразователей, отслеживающих профиль волны, – так называемых, поплавков, расположенных на поверхности воды.

Здесь используют определенные виды поплавков-преобразователей.

  • «Утка Солтера» – большое количество поплавков, смонтированных на общем валу. Для эффективной работы такого поплавка необходимо установить на валу 20–30 поплавков.
  • Плот Коккереля – сооружение из четырех секций, соединенных шарнирно, которые изгибаются под влиянием волн и приводят в действие гидроцилиндрические установки, способствующие работе генераторов.
  • Преобразователи Pelamis – так называемые морские змеи – соединенные шарнирами цилиндрические секции. Под воздействием волн импровизированная змея изгибается, приводя в движение гидравлические поршни.

Достоинства и недостатки волновой энергетики

На сегодня всего 1 % получаемой электроэнергии приходится на волновые электростанции, хотя потенциал их огромен. Ограниченное использование волновых электростанций связано прежде всего с дороговизной получаемой энергии. Один киловатт электричества, полученный на ВЭС, дороже, чем сгенерированный на ТЭС или АЭС, в несколько раз.

К другим недостаткам использования волновых электростанций можно отнести следующие факторы:

  • Экологические. Покрытие значительной части акватории преобразователями волн может навредить экологии, поскольку волны играют большую роль в газообмене океана и атмосферы, в очищении водной поверхности от загрязнений.
  • Социально-экономические. Некоторые типы генераторов, применяемые в ВЭС, представляют опасность для судоходства. Это может вытеснить рыбаков из крупных рыбопромышленных зон.

Несмотря на вышеперечисленные минусы, в определенных районах земного шара за волновыми электростанциями будущее, и вот почему:

  1. Станции могут выступать в роли волногасителей, защищая тем самым берега гавани, порты, береговые сооружения от разрушений.
  2. Возможна установка волновых электрогенераторов малой мощности на опорах мостов, причалов, уменьшающая воздействие на них.
  3. Удельная мощность ветра на пару порядков ниже мощности волнения, поэтому волновая энергетика более выгодна, нежели ветровая.
  4. Для выработки электрической энергии посредством морских волн не требуется углеводородного сырья, запасы которого стремительно иссякают.
Основной задачей разработчиков волновых электростанций является усовершенствование конструкции станции таким образом, чтобы значительно снизить себестоимость получаемой электроэнергии.

География применения волновых электроэнергетических установок

Использование волновых электростанций незначительных мощностей находит применение в получении электропитания для небольших объектов:

  • береговых сооружений;
  • небольших поселений;
  • автономных маяков, буев;
  • научно-исследовательских приборов;
  • буровых платформ.

Уже около 400 навигационных буев и маяков получают питание от волновых энергоустановок – как, например, плавучий маяк индийского порта Мадрас.

Португалия

Первая в мире крупная волновая электростанция с мощностью 2,25 МВт начала эксплуатироваться в 2008 году в районе португальского местечка Агусадора. Проект установки разработала шотландская компания Pelamis Wave Power, заключившая контракт с португальцами на 8 миллионов евро.

Сейчас на станции функционируют три преобразователя энергии волн – змеевидные устройства, погруженные на одну половину в воду. Длина каждого преобразователя равна 120 метрам, а диаметр – 3,5. Вес так называемой морской змеи составляет 750 тонн. Волны приводят в движение секции преобразователей, а сопротивление гидравлической системы способствует выработке электричества, которое по кабелям передается на сушу (станция базируется в 5 км от берега). В настоящее время ведутся работы по увеличению мощности этой волной станции с 2,25 МВт до 21 МВт: планируется добавить еще 25 преобразователей. В этом случае установка обеспечит электроснабжением 15 тысяч домов.

Норвегия

Опытно-промышленные волновые были впервые введены в строй в 1985 году в Норвегии.

Одна из них, мощностью до 500 кВт, является пневматической волновой установкой, в которой нижняя открытая часть камеры погружена под самый низкий поверхностный слой воды.

Мощность второй составляет 450 кВт. Здесь применяется эффект набегания волны на 147-метровый конфузорный откос (отлогую конусообразную поверхность). Суживающийся канал расположен в фьорде, а турбинный водоприемник возвышается на 3 м над средним уровнем моря. Установка, размещенная на берегу, исключает трудности с ее ремонтом и обслуживанием.

Австралия

Одним из самых успешных проектов в части переработки энергии океанских волн является электростанция турбинного типа Oceanlinx, работающая в акватории австралийского города Порт-Кембл. После реконструкции и переоборудования, начатых в 2005 году, станцию вновь запустили в 2009 году.

Принцип работы Oceanlinx заключается во вращении турбин сжатым воздухом, поступающим из специальной камеры. Конструкция станции громоздка, и благодаря тяжести своего веса она стоит на дне, не нарушая его структуры. Около 1/3 всей конструкции, а это составляет почти 15 метров, выступает над поверхностью воды.

Важным достоинством волновой станции такого типа является производство прогнозируемого количества энергии. Платформы работают вследствие возмущения океанической поверхности, а не самих волн. Это позволяет определить погодные условия, влияющие на количество вырабатываемой энергии, на 5–7 дней вперед. Мощность Oceanlinx составляет 1 МВт, а потребители получают около 450 кВт электричества.

Корректная и эффективная работа города, и особенно коммунального хозяйства зависит от надежной техники. тому пример.

Поломался холодильник и вы его тащите на свалку? Не спешите – прочтите !

У вас много рисовой шелухи, и уже некуда от нее спасаться? Нужный материал по ссылке.

Россия

Применение волновой энергетики в России делает только первые шаги. Совсем недавно волновая электростанция, аналогичная португальской, была в экспериментальном порядке запущена на полуострове Гамова в Приморском крае. Испытания проходили в бухте Витязь на морской экспериментальной станции «Мыс Шульца». Инициаторами этой идеи стали ученые Уральского федерального университета и исследователи Тихоокеанского океанологического института при Дальневосточном отделении Российской Академии Наук.

Испытания показали, что волновая энергетика обладает большими перспективами.

Опасения при запуске этой станции вызвали:

  1. возможные повреждения генератора от воздействующих на него волн;
  2. безопасность движения рыболовецких траулеров в непосредственной близости от станции.

Вместе с тем волновая установка, разработанная российскими специалистами, помимо основной задачи – выработки электрической энергии, может осуществлять ряд дополнительных функций:

  1. стать волногасителем, обеспечивая защиту береговых сооружений;
  2. производить автоматическую охрану морских границ.

Развивать волновую энергетику в России необходимо. Однако существующие запасы углеводородов, отработанные, проверенные временем, освоенные до мелочей технологии традиционной выработки электроэнергии ставят под сомнение рентабельность использования волновых электростанций больших мощностей. Волновые электростанции наравне с вероятно станут тем необходимым шагом вперед в энергетике которого все мы, так долго ждем.

Есть смысл применять альтернативную энергетику в малозаселенных районах побережья Северного Ледовитого океана, Приморья, Дальнего Востока.

Имеющий все права на жизнь способ получения энергии. Но у меня сложилось впечатление, что приведенные в статье недостатки существенно перешивают достоинства.
С другой стороны, я вполне допускаю, что со временем специалисты найдут способ усовершенствовать волновые электростанции, и пока еще рано категорично говорить о плюсах и минусах данных преобразователей энергии. Слишком уж короток и мал опыт применения их на практике.

Волновая электростанция – это один из подвидов электростанций, использующих для выработки электроэнергии кинетическую энергию воды. В данном случае используется энергия волн морей и океанов.

Это относительно новый вид энергетики, хотя ее история насчитывает уже более 200 лет. Чаще всего волновые электростанции устанавливаются недалеко от прибрежных зон там, где потенциальная волновая активность выше всего. К таким местам относятся: западно-европейское побережье, северное побережье Англии, Тихоокеанское побережье Америки (обоих континентов), прибрежная зона Южной Африки, Австралии и Новой Зеландии.

История

Первая так называемая «волновая мельница» была запатентована Парижским патентным бюро аж в 1799 году. С этого момента инженерами и учеными производились многочисленные попытки использования кинетической энергии волн для выработки электричества . Вплоть до начала 20-го века было множество подобных изобретений, правда не одно из них так и не использовалось в промышленных масштабах.

Лишь в 1973 году после катастрофической нехватки нефтяных запасов (нефтяной кризис) интерес исследователей и ученых к альтернативной энергетике заметно возрос. Начались активно разрабатываться и создаваться, в том числе и волновые электростанции.

Первая промышленная волновая электростанция, разработка которой началась в 2005 году, была введена в эксплуатацию 23 сентября 2008 года в 5-ти километровой прибрежной зоне Португалии (район Агусадора). Ее эксплуатационная электрическая мощность составила 2,25 МВт. Сейчас она обеспечивает светом более 1,5 тыс. частных домов.

Принцип работы

Современная волновая электростанция состоит из нескольких специальных конвертеров, мощность каждого из которых может достигать 1 МВт. Каждый конвертер состоит из нескольких секций, между которыми закреплены на движимых конструкциях гидравлические поршни. К каждому поршню или системе поршней привязан гидравлический двигатель, который приводит во вращение электрический генератор .

Под действием волн конвертер начинает качаться, что приводит в движение гидравлические поршни. Последние создают в гидравлической системе, в которой находится масло, давление, а оно в свою очередь движет гидравлическими двигателями.

Один конвертер может достигать в длину до 150 метров и иметь диаметр около 3 метров. Вес одной такой установки не редко достигает 700 – 800 тонн.

Есть и другие конструкции конвертеров, которые представляют собой отдельные буи, расположенные не горизонтально, а вертикально. Принцип их работы аналогичен предыдущему с той лишь разницей, что гидравлические поршни имеют несколько иную форму.

Сложность конструкций всех существующих конвертеров заключается лишь в эксплуатационных особенностях механических их частей. Ведь волновые электростанции, как правило, находятся в соленой воде, поэтому очень важно не допустить ее контакта с металлическими элементами конвертера.

Также очень часто приходится использовать специальные приспособления (волнорезы и тормозные щиты), чтобы снизить чрезмерную энергию волны, которая с легкостью может разрушить всю конструкцию.

Удельная мощность всех волн морей и океанов намного превосходит как ветровую, так и солнечную суммарную энергию. Ученые подсчитали, что средняя эквивалентная мощность волны на нашей планете равняется примерно 15 кВт на погонный метр. И это при средней высоте волн до 1 метра. Если же волны, а это бывает не так уж и редко, достигают высоты 2 и более метров, их эквивалентная мощность может доходить до 80 кВт/м пог.