Подготовка к ОГЭ по биологии. Бактерии и вирусы: теория и практика. Отличия грибов от животных

Теория для подготовки к блоку №4 ЕГЭ по биологии: система и многообразие органического мира.

Бактерии

Бактерий относят к прокариотическим организмам, которые не имеют ядерных оболочек, пластид, митохондрий и других мембранных органелл. Для них характерно наличие одной кольцевой ДНК. Размеры бактерий достаточно малы 0,15- 10 мкм. По форме клеток их можно разделить на три основные группы: шаровидные , или кокки , палочковидные и извитые . Бактерии, хотя и относятся к прокариотам, имеют довольно сложное строение.

Строение бактерий

Бактериальная клетка покрыта несколькими внешними слоями. Клеточная стенка обязательна для всех бактерий и является основным компонентом бактериальной клетки. Клеточная стенка бактерий придает форму и жесткость и, кроме того, выполняет ряд важных функций:

  • защищает клетку от повреждений
  • участвует в метаболизме
  • у многих патогенных бактерий токсична
  • участвует в транспорте экзотоксинов

Основным компонентом клеточной стенки бактерий является полисахарид муреин . В зависимости от строения клеточной стенки бактерии делятся на две группы: грамположительные (окрашиваются по Граму при приготовлении препаратов для микроскопирования) и грамотрицательные (не окрашиваются этим способом) бактерии.

Формы бактерий: 1 - микрококки; 2 - диплококки и тетракокки; 3 - сарцины; 4 - стрептококки; 5 - стафилококки; 6, 7 - палочки, или бациллы; 8 - вибрионы; 9 - спириллы; 10 - спирохеты

Сроение бактериальной клетки: I - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - нуклеоид; 5 - цитоплазма; 6 - хроматофоры; 7 -тилакоиды; 8 - мезосома; 9 - рибосомы; 10 - жгутики; II - базальное тельце; 12 - пили; 13 - капли жира

Клеточные стенки грамположительной (а) и грамотрицательной (б) бактерий:1 - мембрана; 2 - мукопептиды (муреин); 3 - липопротеиды и белки

Схема строения клеточной оболочки бактерии: 1 - цитоплазматическая мембрана; 2 - клеточная стенка; 3 - микрокапсула; 4 - капсула; 5 - слизистый слой

Обязательных клеточных структур бактерий - три:

  1. нуклеоид
  2. рибосомы
  3. цитоплазматическая мембрана (ЦПМ)

Органами движения бактерий являются жгутики, которых может быть от 1 до 50 и более. Для кокков характерно отсутствие жгутиков. Бактерии имеют способность к направленным формам движения - таксисам.

Таксисы бывают положительными, если движение направлено к источнику стимула, и отрицательными, когда движение направлено от него. Можно выделить следующие виды таксисов.

Хемотаксис - движение, основанное на разнице в концентрации химических веществ в среде.

Аэротаксис - на разнице концентраций кислорода.

При реакциях на свет и магнитное поле возникают соответственно фототаксис и магнитотаксис .

Важным компонентом в строении бактерий являются производные плазматической мембраны - пили (ворсинки). Пили принимают участие в слиянии бактерий в большие комплексы, прикреплении бактерий к субстрату, транспорте веществ.

Питание бактерий

По типу питания бактерии делят на две труппы: автотрофные и гетеротрофные. Автотрофные бактерии синтезируют органические вещества из неорганических. В зависимости от того, какую энергию используют автотрофы для синтеза органических веществ, различают фото- (зеленые и пурпурные серобактерии) и хемосинтезирующие бактерии (нитрифицирующие, железобактерии, бесцветные серобактерии и др.). Гетеротрофные бактерии питаются готовыми органическими веществами отмерших остатков (сапротрофы) или живых растений, животных и человека (симбионты).

К сапротрофам относятся бактерии гниения и брожения. Первые расщепляют азотсодержащие соединения, вторые - углерод-содержащие. В обоих случаях выделяется энергия, необходимая для их жизнедеятельности.

Надо отметить огромное значение бактерий в круговороте азота. Только бактерии и цианобактерии способны усваивать атмосферный азот. В дальнейшем бактерии осуществляют реак­ции аммонификации (разложение белков из мертвой органики до аминокислот, которые затем дезаминируются до аммиака и других простых азотсодержащих соединений), нитрификации (аммиак окисляют в нитриты, а нитриты - в нитраты), денитрификации (нитраты восстанавливаются в газообразный азот).

Дыхание бактерий

По типу дыхания бактерий можно разделить на несколько групп:

  • облигатные аэробы : растут при свободном доступе кисло­рода
  • факультативные анаэробы : развиваются как при досту­пе кислорода воздуха, так и в отсутствии его
  • облигатные анаэробы : развиваются при полном отсутст­вии кислорода в окружающей среде

Размножение бактерий

Бактерии размножаются путем простого бинарного деления клетки. Этому предшествует самоудвоение (репликация) ДНК. Почкование встречается как исключение.

У некоторых бактерий обнаружены упрощенные формы полового процесса. Например, у кишечной палочки половой процесс напоминает конъюгацию, при которой происходит передача части генетического материала из одной клетки в другую при их непосредственном контакте. После этого клетки разъединяются. Количество особей в результате полового процесса остается прежним, но происходит обмен наследственным материалом, т. е. осуществляется генетическая рекомбинация.

Спорообразование свойственно только небольшой группе бактерий, у которых известны два типа спор: эндогенные, образующиеся внутри клетки, и микроцисты, образующиеся из целой клетки. При образовании спор (микроцист) в бактериальной клетке уменьшается количество свободной воды, снижается ферментативная активность, протопласт сжимается и покрывается очень плотной оболочкой. Споры обеспечивают возможность переносить неблагоприятные условия. Они выдерживают длительное высыхание, нагревание свыше 100°С и охлаждение почти до абсолютного нуля. В обычном же состоянии бактерии неустойчивы при высушивании, воздействии прямых солнечных лучей, повышении температуры до 65-80°С и т. д. В благоприятных условиях споры набухают и прорастают, образуя новую вегетативную клетку бактерий.

Несмотря на постоянную гибель бактерий (поедание их простейшими, действие высоких и низких температур и других неблагоприятных факторов), эти примитивные организмы сохранились с древнейших времен благодаря способности к быстрому размножению (клетка может делиться через каждые 20-30 мин), образованию спор, чрезвычайно устойчивых к факторам внешней среды, и их повсеместному распространению.

Для начала стоит разобраться что такое иммунитет и как он связан с состоянием крови человека. Для этого рекомендуем внимательно прочитать статью «КАК ЛЮДИ УБИВАЮТ СВОЮ КРОВЬ… А ВЫ УБИВАЕТЕ СВОЮ КРОВЬ?» (о связи крови и иммунитета, то, о чем молчат врачи):

Далее посмотрите это видео, приоткрывающее завесу тайн связанных с инфекционной теорией заболеваний. В нём рассказывается о вирусе Эбола и др. Вы поймете, что для того, чтобы не болеть инфекционными заболеваниями, достаточно вести здоровый образ жизни. Нет оснований бояться подцепить от кого-то заразу. В здоровом теле и светлой душе не живут даже самые страшные вирусы и бактерии.

Бактерии — слуги, подаренные Человеку природой для очистки нашей внутренней среды от шлаков.

Первичная болезнь — это природная чистка организма.

Для очистки внутренней среды наш организм может использовать микроорганизмы. Он как бы нанимает микробов на очистительные работы, когда не справляется сам. Примерно такой вывод можно сделать из гипотезы профессора А.В. Русакова, о которой ещё в 1991 году А. Н. Чупрун рассказал в своей книжке «Что такое сыроедение и как стать сыроедом (натуристом)».

Основной причиной всех наших болезней является зашлакованность организма. Было замечено, что если в таком состоянии человек подхватывает какую-нибудь инфекцию, у него снижается выработка интерферона – защитные силы, будто нарочно отключаются, позволяя болезни развиваться. Во время болезни наш организм умышленно отключает иммунитет,чтоб бактерии могли уничтожить все шлаки в организме. А мы просто не понимаем назначение бактерий на Земле. Бактерию не интересуют наши мышцы, сердце, глаза или мозг, а только наши токсины в наших тканях. Чем больше отбросов и токсинов мы накапливаем в нашем теле, тем больше мы привлекаем бактерию.

Другой интересный факт — это то, что бактерии никогда не тронут то, что еще живет. Гигантские деревья секвойя живут до 2000 лет, в их соке присутствует очень незначительное количество бактерий. Несмотря на то, что корни секвойи находятся в земле буквально тысячелетиями, бактерии их не трогают. Однако, как только дерево умирает, бактерии немедленно начинают свою работу по превращению дерева обратно в землю. Бактерии знают, что живет, и что умерло, и их интересует только мертвая материя.

Может ли бактерия быть причиной болезни у людей?
И да и нет.
Да, если человеческое тело наполнено токсинами.
Нет, если тело внутри чистое.
Поэтому те, кто едят в основном вареную еду, легко заболевают. Если вы не хотите заболеть, держите свой кишечник в чистоте.

Процесс очистки бактериями у человека схематично можно представить так.

Чужеродные остатки от искажённых молекул варёной пищи, накопившиеся в организме, являются питательной средой для некоторых микроорганизмов и, кроме того, они — существенная помеха для работы иммунной системы. При дополнительном ослаблении местного иммунитета, например в случае охлаждения, или при массированной вирусной инфекции, в каком-то месте человеческого тела создаются благоприятные условия для размножения некоторых из вездесущих микроорганизмов.

Образуется очаг воспаления, где микробы интенсивно перерабатывают накопленные чужеродные остатки в другие вещества, которые наш организм может удалять уже самостоятельно, например, в виде выделений при насморке, кашле, кожных проявлениях и т.п. После завершения этой работы иммунная система, в уже очищенном организме, восстанавливает свою активность и подавляет отслужившую микрофлору. Такова первичная природная защитно-приспособительная реакция нормального организма на загрязнённое состояние внутренней среды.

Эту очистительную реакцию называют словом «болезнь», так как её проявления человеку неприятны и обычно болезненны. Конкретные наименования таким воспалительным болезням дают, как уже говорилось, по названию места, в котором образовался очаг воспаления. Микроорганизмы там тоже могут быть разными, но сущность этих процессов одинакова: производится очистка внутренней среды организма.

Эти болезни имеют много общих симптомов. Обычно повышается температура, возникает болезненность воспалившегося участка тела, снижается аппетит, появляется слабость, позже могут возникнуть кожные явления или другие выделительные процессы — насморк, кашель…. Все эти симптомы означают не поражение организма, а наоборот, его рациональное мудрое поведение, обеспечивающее ему победное завершение очистки. Для организма такая процедура тоже «не мёд», но он выбирает меньшее зло. Ему важнее быстро и с минимальным ущербом освободиться от загрязнений. Природа мудра, она своё дело хорошо знает.

Когда при этих безобидных первичных болезнях-чистках применяют, например, антибиотики или другие медикаменты, то неприятные симптомы уменьшаются, прекращается насморк или кашель, снижается температура и возникает впечатление, что положение исправилось. Внешне это выглядит как помощь человеку, как восстановление здоровья, поэтому до сих пор в подобных случаях традиционно так и поступают. Но это самообман, вернее — ошибочное понимание ситуации. Это приносит вред, так как в результате такого вмешательства в работу организма процесс очистки прекращается или переходит в затяжную хроническую форму. Но главная задача — возвратить природную чистоту внутренней среды — остаётся невыполненной.

Более того, каждое такое «лечение» притупляет чувствительность организма к загрязнению и лишает его первичных очистительных реакций. Такой организм находится в совершенно ненормальных условиях, он обречён существовать при высоком уровне внутреннего загрязнения, а это грубо искажает его жизненные процессы и в дальнейшем приводит к более тяжёлым нарушениям, к возникновению вторичных и третичных болезней.

У таких «залеченных» людей постепенно развиваются патологические процессы, которые из-за различий в наследственных и приобретённых свойствах проявляются в виде самых разных болезней: аллергии, диабета, гипертонии, сердечной недостаточности и т.п., а у некоторых «без видимых причин», неожиданно возникает инфаркт или инсульт. Существует мнение, что рак тоже возникает из-за многих нарушений в работе организма, вызванных большим загрязнением внутренней среды.

Способность организма поддерживать чистоту внутренней среды может служить одним из обобщённых показателей здоровья человека. Когда медицина сможет достоверно измерять «зашлакованность» организма и его чувствительность к различным видам загрязнения, т.е. способность к самоочищению, то можно будет приблизиться к непосредственному измерению того параметра, который академик Н.М. Амосов называл «количеством здоровья». Тогда появится возможность объективно оценивать результаты воздействия на организм различных медикаментов и обоснованно решать вопрос о целесообразности их применения.

К сожалению, врачи, применяющие медикаменты, не всегда заботятся об отдалённых последствиях. Им важнее получить сиюминутное уменьшение неприятных симптомов, получить «эффект лечения». Положение врачей можно понять: обычно им приходится иметь дело с пациентами, у которых организм настолько повреждён многократным применением лекарств и настолько сильно засорён, что его природные очистительные реакции протекают в искажённой, тяжёлой форме. Врачи вынуждены, перестраховываясь, опять применять медикаменты, несмотря на то, что в большинстве случаев такое лечение ещё сильнее искажает природные защитные реакции организма, снижает его реактивность и уменьшает «количество здоровья».

ВАЖНО! КАК МУЧНОЕ ВЛИЯЕТ НА ИММУНИТЕТ? ПОЧЕМУ ВРЕДНО ЕСТЬ ХЛЕБ!

Еще полезное видео о том, КАК ВОССТАНОВИТЬ МИКРОФЛОРУ КИШЕЧНИКА И ИММУНИТЕТ:

ВАЖНАЯ ИНФОРМАЦИЯ! ОСНОВНОЙ АЛГОРИТМ И МЕТОДЫ ЛЕЧЕНИЯ ЛЮБЫХ БОЛЕЗНЕЙ:

Чтобы лучше понять причины и механизмы возникновения болезней обязательно изучите статьи:

* ОКИСЛЕНИЕ КРОВИ ВЕДЕТ К ЗАБОЛЕВАНИЮ ОРГАНИЗМА! ПОЧЕМУ ЗАКИСЛЕНИЕ КРОВИ ЯВЛЯЕТСЯ УГРОЗОЙ ЗДОРОВЬЮ.КИСЛОТНО-ЩЕЛОЧНОЙ БАЛАНС ОРГАНИЗМА (кислотно-щелочное равновесие) – ФИЗИЧЕСКАЯ ОСНОВА ЗДОРОВЬЯ ЧЕЛОВЕКА!

* ВНИМАНИЕ! РЕЗУЛЬТАТЫ КРУПНЕЙШИХ МНОГОЛЕТНИХ ИССЛЕДОВАНИЙ В ОБЛАСТИ ПИТАНИЯ ДОКАЗЫВАЮТ ПРЯМУЮ СВЯЗЬ МЕЖДУ СМЕРТЕЛЬНЫМИ ЗАБОЛЕВАНИЯМИ И УПОТРЕБЛЕНИЕМ «ПИЩИ» ЖИВОТНОГО ПРОИСХОЖДЕНИЯ (любого мяса и молочных продуктов)!

* КАК ВОЗНИКАЮТ ХРОНИЧЕСКИЕ ЗАБОЛЕВАНИЯ. КАК ВЗАИМОСВЯЗАНЫ РАЗЛИЧНЫЕ ОРГАНЫ В ОРГАНИЗМЕ (что на что влияет). Как найти причину своих заболеваний. Подборка видео А.Т. Огулова:

* БЕЗСЛИЗИСТОЕ ПИТАНИЕ – ПУТЬ К ЗДОРОВЬЮ И ДОЛГОЛЕТИЮ!

ВАЖНЕЙШАЯ СТАТЬЯ! НЕ ДАВАЙТЕ ЛИМФЕ ЗАСТАИВАТЬСЯ! Солодка - это самый лучший лимфостимулятор, растение созданное очищать и обновлять лимфатическую систему!

ИСЦЕЛЕНИЕ ПРОСТУДЫ И ГРИППА ЭФФЕКТИВНЫМИ ПРИРОДНЫМИ МЕТОДАМИ! И ПРОФИЛАКТИКА, КАК ОСТАТЬСЯ ЗДОРОВЫМ!

Бактерии — самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Поскольку это были первые представители живой природы, их тело имело примитивное строение.

Со временем их строение усложнилось, но и поныне бактерии считаются наиболее примитивными одноклеточными организмами. Интересно, что некоторые бактерии и сейчас ещё сохранили примитивные черты своих древних предков. Это наблюдается у бактерий, обитающих в горячих серных источниках и бескислородных илах на дне водоёмов.

Большинство бактерий бесцветно. Только немногие окрашены в пурпурный или в зелёный цвет. Но колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в окружающую среду или пигментированием клеток.

Первооткрывателем мира бактерий был Антоний Левенгук — голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп, увеличивающую предметы в 160-270 раз.

Бактерии относят к прокариотам и выделяют в отдельное царство — Бактерии.

Форма тела

Бактерии — многочисленные и разнообразные организмы. Они различаются по форме.

Название бактерии Форма бактерии Изображение бактерии
Кокки Шарообразная
Бацилла Палочковидная
Вибрион Изогнутая в виде запятой
Спирилла Спиралевидная
Стрептококки Цепочка из кокков
Стафилококки Грозди кокков
Диплококки Две круглые бактерии, заключённые в одной слизистой капсуле

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других — на двух или по всей поверхности.

Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

Место обитания

В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде: в капле даже самой чистой родниковой воды, в крупинках почвы, в воздухе, на скалах, в полярных снегах, песках пустынь, на дне океана, в добытой с огромной глубины нефти и даже в воде горячих источников с температурой около 80ºС. Обитают они на растениях, плодах, у различных животных и у человека в кишечнике, ротовой полости, на конечностях, на поверхности тела.

Бактерии — самые мелкие и самые многочисленные живые существа. Благодаря малым размерам они легко проникают в любые трещины, щели, поры. Очень выносливы и приспособлены к различным условиям существования. Переносят высушивание, сильные холода, нагревание до 90ºС, не теряя при этом жизнеспособность.

Практически нет места на Земле, где не встречались бы бактерии, но в разных количествах. Условия жизни бактерий разнообразны. Одним из них необходим кислород воздуха, другие в нём не нуждаются и способны жить в бескислородной среде.

В воздухе: бактерии поднимаются в верхние слои атмосферы до 30 км. и больше.

Особенно много их в почве. В 1 г. почвы могут содержаться сотни миллионов бактерий.

В воде: в поверхностных слоях воды открытых водоёмов. Полезные водные бактерии минерализуют органические остатки.

В живых организмах: болезнетворные бактерии попадают в организм из внешней среды, но лишь в благоприятных условиях вызываю заболевания. Симбиотические живут в органах пищеварения, помогая расщеплять и усваивать пищу, синтезируют витамины.

Внешнее строение

Клетка бактерии одета особой плотной оболочкой — клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи — капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула — не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Внутреннее строение

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота — ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

В центральной части клетки локализовано ядерное вещество — ДНК, не отграниченная от цитоплазмы мембраной. Это аналог ядра — нуклеоид. Нуклеоид не обладает мембраной, ядрышком и набором хромосом.

Способы питания

У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы — организмы, способные самостоятельно образовывать органические вещества для своего питания.

Растения нуждаются в азоте, но сами усваивают азот воздуха не могут. Некоторые бактерии соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

Корни дают бактериям углеводы, а бактерии корням — такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

Корни растений выделяют много органических веществ (сахара, аминокислоты и другие), которыми питаются бактерии. Поэтому в слое почвы, окружающем корни, поселяется особенно много бактерий. Эти бактерии превращают отмершие остатки растений в доступные для растения вещества. Этот слой почвы называют ризосферой.

Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня:

  • через повреждения эпидермальной и коровой ткани;
  • через корневые волоски;
  • только через молодую клеточную оболочку;
  • благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты;
  • благодаря стимуляции синтеза В-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений.

Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз:

  • инфицирование корневых волосков;
  • процесс образования клубеньков.

В большинстве случаев внедрившаяся клетка, активно размножается, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина.

Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные. К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Бактерии клубеньков создают десятки и сотни килограммов азотных удобрений на гектаре почвы.

Обмен веществ

Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода, у других — без его участия.

Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

Бактерии впитывают вещества извне, разрывают их молекулы на части, из этих частей собирают свою оболочку и пополняют своё содержимое (так они растут), а ненужные молекулы выбрасывают наружу. Оболочка и мембрана бактерии позволяет ей впитывать только нужные вещества.

Если бы оболочка и мембрана бактерии были полностью непроницаемыми, в клетку не попали бы никакие вещества. Если бы они были проницаемыми для всех веществ, содержимое клетки перемешалось бы со средой — раствором, в которой обитает бактерия. Для выживания бактерии необходима оболочка, которая нужные вещества пропускает, а ненужные — нет.

Бактерия поглощает находящиеся близ неё питательные вещества. Что происходит потом? Если она может самостоятельно передвигаться (двигая жгутик или выталкивая назад слизь), то она перемещается, пока не найдёт необходимые вещества.

Если она двигаться не может, то ждёт, пока диффузия (способность молекул одного вещества проникать в гущу молекул другого вещества) не принесёт к ней необходимые молекулы.

Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Превращая различные соединения, они получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий разнообразны.

Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счёт неорганических соединений. Они называются автотрофами. Автотрофные бактерии способны синтезировать органические вещества из неорганических. Среди них различают:

Хемосинтез

Использование лучистой энергии — важнейший, но не единственный путь создания органического вещества из углекислого газа и воды. Известны бактерии, которые в качестве источника энергии для такого синтеза используют не солнечный свет, а энергию химических связей, происходящих в клетках организмов при окислении некоторых неорганических соединений — сероводорода, серы, аммиака, водорода, азотной кислоты, закисных соединений железа и марганца. Образованное с использованием этой химической энергии органическое вещество они используют для построения клеток своего тела. Поэтому такой процесс называют хемосинтезом.

Важнейшую группу хемосинтезирующих микроорганизмов составляют нитрифицирующие бактерии. Эти бактерии живут в почве и осуществляют окисление аммиака, образовавшегося при гниении органических остатков, до азотной кислоты. Последняя, реагирует с минеральными соединениями почвы, превращаются в соли азотной кислоты. Этот процесс проходит в две фазы.

Железобактерии превращают закисное железо в окисное. Образованная гидроокись железа оседает и образует так называемую болотную железную руду.

Некоторые микроорганизмы существуют за счёт окисления молекулярного водорода, обеспечивая тем самым автотрофный способ питания.

Характерной особенностью водородных бактерий является способность переключаться на гетеротрофный образ жизни при обеспечении их органическими соединениями и отсутствии водорода.

Таким образом, хемоавтотрофы являются типичными автотрофами, так как самостоятельно синтезируют из неорганических веществ необходимые органические соединения, а не берут их в готовом виде от других организмов, как гетеротрофы. От фототрофных растений хемоавтотрофные бактерии отличаются полной независимостью от света как источника энергии.

Бактериальный фотосинтез

Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты — бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка — карбоновые кислоты), а у зелёных растений — вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

6СО 2 +12Н 2 S+hv → С6Н 12 О 6 +12S=6Н 2 О

Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.

Спорообразование

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий.

Споры — не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий — это приспособление к выживанию в неблагоприятных условиях.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес — 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Бактерия (1), поглотившая достаточно пищи, увеличивается в размерах (2) и начинает готовиться к размножению (делению клетки). Её ДНК (у бактерии молекула ДНК замкнута в кольцо) удваивается (бактерия производит копию этой молекулы). Обе молекулы ДНК (3,4) оказываются, прикреплены к стенке бактерии и при удлинении бактерии расходятся в стороны (5,6). Сначала делится нуклеотид, затем цитоплазма.

После расхождения двух молекул ДНК на бактерии появляется перетяжка, которая постепенно разделяет тело бактерии на две части, в каждой из которых есть молекула ДНК (7).

Бывает (у сенной палочки), две бактерии слипаются, и между ними образуется перемычка (1,2).

По перемычке ДНК из одной бактерии переправляется в другую (3). Оказавшись в одной бактерии, молекулы ДНК сплетаются, слипаются в некоторых местах (4), после чего обмениваются участками (5).

Роль бактерий в природе

Круговорот

Бактерии — важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Эти вещества возвращаются в почву с отмершими грибами, растениями и трупами животных. Бактерии разлагают сложные вещества на простые, которые снова используют растения.

Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

Почвообразование

Поскольку бактерии распространены практически повсеместно и встречаются в огромном количестве, они во многом определяют различные процессы, происходящие в природе. Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

Некоторые почвенные бактерии способны поглощать азот из воздуха, используя его в процессах жизнедеятельности. Эти азотофиксирующие бактерии живут самостоятельно или поселяются в корнях бобовых растений. Проникнув в корни бобовых, эти бактерии вызывают разрастание клеток корней и образование на них клубеньков.

Эти бактерии выделяют азотные соединения, которые используют растения. От растений бактерии получают углеводы и минеральные соли. Таким образом, между бобовым растением и клубеньковыми бактериями существует тесная связь, полезная как одному, так и другому организму. Это явление носит название симбиоза.

Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

Распространение в природе

Микроорганизмы распространены повсеместно. Исключение составляют лишь кратеры действующих вулканов и небольшие площадки в эпицентрах взорванных атомных бомб. Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жёсткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы — аборигены нашей планеты, активно осваивающие самые невероятные природные субстраты.

Микрофлора почвы

Количество бактерий в почве чрезвычайно велико — сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв.

На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.

Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора — один из факторов образования почв.

Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов

Вода — природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается.

Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая — 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные.

По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха

Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека

Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками — прекрасная среда для развития микроорганизмов.

Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре.

Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Бактерии в круговороте веществ

Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным. Различные этапы круговорота элементов осуществляются организмами разного типа. Существование каждой отдельной группы организмов зависит от химического превращения элементов, осуществляемого другими группами.

Круговорот азота

Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Свыше 90% общей фиксации азота обусловлено метаболической активностью определённых бактерий.

Круговорот углерода

Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии осуществляют полное окисление органических веществ. В аэробных условиях органические соединения первоначально расщепляются путём сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода (нитрат, сульфат или СО 2).

Круговорот серы

Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

Круговорот железа

В некоторых водоёмах с пресной водой содержатся в высоких концентрациях восстановленные соли железа. В таких местах развивается специфическая бактериальная микрофлора — железобактерии, окисляющие восстановленное железо. Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа.

Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они - первые организмы, появившиеся на Земле.

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ
ЦАРСТВО БАКТЕРИИ (= ц. прокариоты).

Это одноклеточные микроскопические организмы, не имеющие оформленного ядра. Самые древние организмы, появились более 3 млрд. лет назад. Распространены повсеместно: больше всего - в почве, меньше - в воде, ещё меньше - в воздухе. Много их в живых организмах

1. Строение клетки:

Клетка покрыта плазматической мембраной, за которой следует клеточная стенка (из муреина).

У большинства слизистая капсула, которая защищает клетку от высыхания и содержит токсины;

Нет мембранных органоидов (их функции выполняют мезосомы - впячивания мембраны)

Есть рибосомы, более мелкие чем в клетках эукариот;

- генетический аппарат - НУКЛЕОИД - кольцевая молекула ДНК, не связанная с белками (выполняет функцию хромосомы;

В цитоплазме есть плазмиды - небольшие молекулы ДНК, определяющие отдельные признаки бактерий.

Органоиды движения — жгутики и реснички.

2. Формы бактерий

шарообразные - кокки (стрептококки, стафилококки)

палочковидные - бациллы (картофельная палочка, молочнокислые бактерии)

спирально извитые - спириллы и спирохеты (бледная спирохета - возбудитель сифилиса)

в форме запятой - вибрионы (холерный вибрион)

Жизнедеятельность

  • питание:
  1. автотрофы

    (образуют органические вещества)

    гетеротрофы

    (питаются готовыми органическими веществами)

    фототрофы

    хемотрофы

    сапрофиты

    симбионты

    (используют энергию солнца)

    *цианобактерии

    (сине-зелёные водоросли)

    (используют энергию хим. связей)

    бактерии

    *железо-бактерии

    Сапротрофы

    (питаются неживым органическим веществом)

    *молочно-кислые бактерии

    (используют органические

    вещества тела хозяина)

    *болезнетвор-ные бактерии

    (живут за счет других организмов, принося им пользу)

    *клубеньковые бактерии (живут в симбиозе с бобовыми растениями),

    * кишечная палочка (синтезирует витамины группы В, К)

  • дыхание:
  • размножение: деление пополам каждые 20 минут
  • Спорообразование - образование спор. Спора - часть клетки, покрытая плотной оболочкой. Значение: перенесение неблагоприятных условий (холод, засуха).

Спора может десятилетиями быть в неактивном состоянии, переноситься водой и ветром. Она не боится высыхания, холода, жары. Убийственным фактором для спор являются прямые солнечные лучи или искусственное облучение ультрафиолетовыми лучами (УФЛ). При попадании в благоприятную среду из споры быстро образуется бактерия.

Значение бактерий:

  1. польза:

Звено в цепи питания (пища для одноклеточных)

Бактерии гниения образуют перегной

Почвенные бактерии превращают перегной в минеральные соли

Клубеньковые бактерии (на корнях бобовых растений) превращают азот воздуха в соли, которые в растворенном виде всасываются корнями

Молочнокислые бактерии используются в молочной промышленности, силосовании кормов

Месторождения серы образованы серобактериями, железорудные месторождения - железобактериями

В биотехнологии (синтез инсулина)

вред:

Портят продукты питания, книги в книгохранилищах, сено в стогах

Болезнетворные вызывают болезни: тиф, холеру, дифтерию, столбняк, туберкулез, ангину, сибирскую язву, бруцеллез, чуму, ботулизм, коклюш, венерические заболевания

6. Способы борьбы с бактериями:

а) обработка УФЛ;

б) обработка горячим паром;

в) стерилизация (нагревание до + 1200С под давлением)

г) дезинфекция (обработка химическими веществами - антисептиками)

д) пастеризация - обеззараживание при 60-70 0 С в течение 20-30 мин.

е) в домашних условиях: маринование в уксусной кислоте, засолка, охлаждение и замораживание продуктов;

ж) использование антибиотиков

ЦАРСТВО ВИРУСЫ

Вирусы (от лат. virus — яд) - частицы, представляющие собой переходную форму между живой и неживой материей и не имеющие клеточного строения.

Открыты в 1892г. русским учёным Д.Ивановским. Он обнаружил и описал вирус табачной мозаики. Этот вирус поражает табак, вызывая разрушение хлорофилла, из-за чего некоторые участки становятся более светлыми.

Отличия от неживой материи:

  1. способность воспроизводить себе подобные формы (размножаться)
  2. обладание наследственностью и изменчивостью.

Строение вирусов:

молекула РНК или ДНК, заключенная в белковую оболочку, которую называют капсидом (рис.16).


Рис. 18 Бактериофаг

Особенности жизнедеятельности

  1. Проникнув в клетку, вирус изменяет в ней обмен веществ, направляя всю ее деятельность на производство вирусной нуклеиновой кислоты и вирусных белков .
  2. Внутри клетки происходит самосборка вирусных частиц из синтезированных молекул нуклеиновой кислоты и белков.
  3. Иногда в ирусная ДНК встраивается в ДНК к л етки- хозяина, заставляя клеточную ДНК продуцировать вирусные ДНК.
  4. До момента гибели в клетке успевает синтезироваться огромное число вирусных частиц. В конечном итоге клетка гибнет, оболочка ее лопается и вирусы выходят из клетки-хозяина (рис. 17).

Вирусные болезни:

Значение вирусов:

Биологические мутагены (вызывают мутации).

Бактериофаги используются в медицине против бактерий.

Используются в генной инженерии.

Возбудители заболеваний.

ВИЧ - вирус иммунодефицита человека.

Болезнь СПИД обнаружена в 1981г., а в 1983г. обнаружен возбудитель - ВИЧ. ВИЧ обладает уникальной изменчивостью, которая в 5 раз превышает изменчивость вируса гриппа и в 100 раз больше, чем у вируса гепатита В. Беспрерывная генетическая и антигенная изменчивость вируса в человеческой популяции приводит к появлению новых вирионов ВИЧ, что резко усложняет проблему получения вакцины и затрудняет проведение специальной профилактики СПИДа.

Для СПИДа характерен очень длительный инкубационный период. У взрослых он составляет в среднем 5 лет . Предполагается, что ВИЧ может сохраняться в организме человека пожизненно.

Пути передачи ВИЧ - инфекции:

1. Половой (со спермой и влагалищным секретом) - при непостоянном половом партнере и гомосексуальных отношениях; при искусственном оплодотворении.

2. При использовании загрязненных медицинских инструментов, у наркоманов - одним шприцем.

3. От матери - ребенку: внутриутробно, при родах, при кормлении материнским молоком.

4. Через кровь: при переливании крови, пересадке органов и тканей.

Вирус поражает ту часть иммунной системы человека, которая связана с Т - лимфоцитами крови, обеспечивающими клеточный и гуморальный иммунитет. В результате болезни человеческий организм становится беззащитным перед инфекционными и опухолевыми заболеваниями, с которыми справляется нормальная иммунная система.

Стадии болезни СПИДа.

I . Заражение вирусом ВИЧ: недельная лихорадка, увеличение лимфоузлов, сыпь. Через месяц в крови обнаруживаются антитела к вирусу ВИЧ.

II . Скрытый период (от нескольких недель до нескольких лет): изъязвления слизистой, грибковые поражения кожи, похудение, понос, повышенная температура тела.

III . СПИД : воспаление легких, опухоли (саркома Капоши), сепсис и другие инфекционные заболевания.

Возбудителя СПИДа убивает:

50 - 70о спирт → несколько секунд.

Кипячение → мгновенно.

То = 56оС → 30 минут.

Дезинфицирующие вещества (хлорамин, хлорная известь) → мгновенно.

Попадание в желудочно-кишечный тракт → разрушается пищеварительными ферментами и соляной кислотой.

Тестовые задания в формате ОГЭ

Задание 3. Царство Бактерии. Царство Вирусы.

3.1 Бактерии не имеют оформленного ядра, поэтому их относят к

1) эукариотам 2) прокариотам 3) автотрофам 4) гетеротрофам

3.2. Клетки бактерий отличаются от клеток растений и животных отсутствием:

1) клеточной оболочки 2) цитоплазмы 3) ядра 4) рибосом

3.3. Какие бактерии считают «санитарами планеты»

1) гниения 2) уксуснокислые 3) молочнокислые 4) клубеньковые

3.4. Большинство бактерий в круговороте выполняют роль

1) производителей органических веществ 2) потребителей органических веществ

3) разрушителей органических веществ 4) концентраторов органических веществ

3.5. Клубеньковые бактерии вступают в симбиоз с бобовыми растениями, улучшая их питание

1) калийное 2) фосфорные 3) азотное 4) кальциевое

3.6. Бактерии размножаются

1) спорами 2) с помощью половых клеток 3) вегетативным способом 4) путем деления клетки

3.7. Большинство бактерий по способу питания

1) производители органических веществ 2) симбиотические организмы

3) потребители неорганических веществ 4) разрушители органических веществ

3.8. Клубеньковые бактерии, обитающие в корнях бобовых растений, являются

3.9.Генетический материал бактерии содержится в

оформленном ядре 3) нескольких хромосомах

в кольцевой молекуле ДНК 4) в кольцевой молекуле РНК

3.10. Бактерии, использующие для дыхания кислород, называются

3.11. Бактерии, живущие в содружестве с другими организмами - это

3.12. Фотосинтезирующие сине-зеленые цианобактерии являются

3.13. Споры у бактерий обеспечивают

1) перенесение неблагоприятных условий 2) половое размножение

3) вегетативное размножение 4) бесполое размножение

3.14. Какой биологический объект изображён на рисунке?

1) клетка бактерии 2) спора гриба 3) вирус ВИЧ 4) семя растения

3.15. Какой из приёмов борьбы с болезнетворными бактериями наиболее эффективен в операционном блоке?

1) пастеризация 2) регулярное проветривание

3) облучение ультрафиолетовыми лучами 4) мытье полов горячей водой

3.16. К какой группе тел живой природы относят изображённый на рисунке объект:

1) эукариоты 2) нанороботы 3) прокариоты 4) вирусы

Задание 23. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны.

  1. 23.1. Выберите условия, обеспечивающие сапрофитным бактериям процветание в природе

1) сложность внутреннего строения 4) способность к фотосинтезу

2) сложность обмена веществ 5) простота внутреннего строения

3) способность быстро размножаться 6) питание органическими веществами

  1. 23.2. Выберите правильные утверждения

1) клубеньковые бактерии обогащают почву азотом

2) бактерии затрудняют усвоение растениями минеральных веществ

4) бактерии гниения питаются остатками растений и животных

5) квашение капусты и силосование кормов вызывается молочнокислыми бактериями

6) чтобы продукты не портились, им необходим доступ кислорода

Задание 25. Установите соответствие: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

25.1. Установите соответствие

Признаки Царства организмов

1) эукариоты

2) используют для выпечки хлеба А) грибы

3) одноклеточные и многоклеточные Б) бактерии

4) в клетке одна хромосома

5) некоторые способны к хемосинтезу и фотосинтезу

6) многие являются возбудителями заболеваний

25.2. Установите соответствие

Признаки Тип клеток

1) отсутствует оформленное ядро А) прокаритная

2) хромосомы расположены в ядре Б) эукариотная

3) имеется аппарат Гольджи

4) в клетке одна кольцевая хромосома

5) АТФ образуется в митохондриях

Задание 27. Выберите из предложенного списка и вставьте в текст пропущенные слова, используя для этого их цифровые обозначения. Впишите номера выбранных слов на место пропусков в тексте.

27.1. ВИРУСЫ

Вирусы - ---------- (А) формы жизни, проявляющие некоторые признаки живых организмов только внутри других клеток. Вирус состоит из генетического материала и -------(Б). Генетический материал образован ------(В): ДНК или РНК. ДНК-содержащие вирусы после проникновения в клетку встраивают свою ДНК в собственный генетический материал клетки. РНК-содержащие вирусы после проникновения в клетку сначала преобразуют информацию своей РНК в ДНК, путём -------(Г), а затем она встраивается в генетический материал клетки.

Перечень терминов:

2) нуклеиновая кислота

3) клеточная мембрана

4) белковый капсид

5) обратная транскрипция

6) трансляция

7) одноклеточный

8) неклеточный

Запишите в таблицу выбранные цифры под соответствующими буквами. Ответ:

27.2. БАКТЕРИИ

Бактерии в основном _______(А) организмы. При неблагоприятных условиях они могут образовывать ______(Б). Многие бактерии имеют ______(В), с помощью которых они передвигаются. Наследственная информация у этих микроорганизмов хранится в виде ______(Г).

Перечень терминов:

2) ядерное вещество

3) ложноножка

7) одноклеточные

8) многоклеточные

Запишите в таблицу выбранные цифры под соответствующими буквами.

27.3. БИОТЕХНОЛОГИЯ

Биотехнология - дисциплина, изучающая возможности использования биологических объектов для создания живых организмов с необходимыми свойствами. Наибольшие успехи достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью небольших кольцеобразных молекул ДНК - _______(А), присутствующих в бактериальных клетках. В них «вклеивают» необходимые _______(Б), а затем добавляют их к культуре бактерий, например _______(В). После этого гибридная кольцевая ДНК _______(Г) в клетке, воспроизводя десятки своих копий, которые обеспечивают синтез новых белков.3.7

АААБББ

АББАБ

Литература

Заяц Р.Г., Бутиловский В.Э., Давыдов В.В. Биология. Вся школьная программа в таблицах. Минск: Открытая книга, 2016.-448 с.

Заяц Р.Г., Рачковская И.В., Бутиловский В.Э., Давыдов В.В. Биология для абитуриентов: вопросы, ответы, тесты, задачи.- Минск: Юнипресс, 2011.-768 с.

«Решу ОГЭ»: биология. Обучающая система Дмитрия Гущина [Электронный ресурс] - URL:http:// oge.sdamgia.ru

Инфекционные заболевания вызываются микроорганизмами, которые попадают в тело человека извне.

В середине XIX века среди медиков разгорелся спор о происхождении инфекционных заболеваний. Представители одного лагеря защищали старую точку зрению, что причина заболевания — нарушение равновесия в организме, возможно обостренное внешними воздействиями. Им противостояла группа ученых, отстаивавших революционное представление, согласно которому инфекционные заболевания возникают в результате внедрения в тело микроорганизмов.

Новое течение возглавлял французский ученый Луи Пастер. В своих исследованиях он шел не таким путем, как все. В 1854 году он был профессором химии в Лилле, где деятельность университета была направлена в основном на помощь местной промышленности. Пастер изучал процесс брожения, который, безусловно, очень важен для получения вина. Он пришел к заключению, что брожение вызвано микробами, которые питаются сахаром, содержащимся в виноградном соке, и производят в качестве побочного продукта своей жизнедеятельности спирт. Пастеру стало ясно, что брожение — это биохимический процесс, а не просто химический, как считали многие, и этот процесс невозможен без микроорганизмов, а именно дрожжей.

Пастер также обнаружил, что нагревание способствует более длительному хранению вина. Оно убивает микробов, которые в противном случае запустили бы дальнейшие реакции, приводящие к порче вина. Этот принцип лег в основу пастеризации , до сих пор применяющейся в молочной промышленности большинства стран мира для предохранения молока от скисания.

Подобно многим своим современникам, Пастер предчувствовал, что между процессом брожения и болезнетворным процессом в организме человека должно быть нечто общее. В конце XIX века представление о том что, заболевание, подобно брожению, вызывается микроорганизмами, уже имело немало сторонников, и количество доказательств в пользу этой точки зрения все возрастало. Пастер смог показать, что болезнь, нанесшая огромный ущерб шелковичным червям во Франции, имела бактериальное происхождение. В 1860-е годы английский хирург Джозеф Листер (Joseph Lister, 1827-1912), разделявший представления Пастера, с их помощью продемонстрировал преимущества антисептической хирургии, а немецкий бактериолог Роберт Кох (Robert Koch, 1843-1910) добился успеха в обосновании бактериального происхождения сибирской язвы — болезни крупных животных (которой иногда болеет и человек). Пастер показал, что сибирская язва может передаваться даже с сильно разбавленной кровью, но не передается с кровью, пропущенной через фильтр (процесс фильтрования приводит к удалению бактерий). Вскоре он обнаружил, что микробы вызывают и ряд других заболеваний, включая родильную лихорадку (послеродовой сепсис), которая в то время была основной причиной смертности среди женщин. Пастер даже навлек на себя гнев медиков, установив, что врачи сами распространяют это заболевание, переходя от одной роженицы к другой.

Впоследствии Пастер, изучая холеру домашней птицы, обнаружил (почти случайно), что после длительного выдерживания вирулентность микроорганизмов снижается. Такие ослабленные микроорганизмы стали использоваться в качестве вакцины. Затем последовало создание вакцины против сибирской язвы, а также против бешенства — эта вакцина принесла Пастеру известность. Еще до смерти Пастера в 1895 году микробная теория инфекционных заболеваний была признана в научных и медицинских кругах.

Луи ПАСТЕР
Louis Pasteur, 1822-95

Французский химик и микробиолог, родился в небольшой деревне в семье кожевника. Изучал химию парижской Высшей нормальной школе и в 1847 году получил докторскую степень. Первые научные работы Пастера посвящены оптическим свойствам материалов. В 1854 году, после непродолжительной работы в университетах Дижона и Страсбурга, Пастер получил должность профессора химии в Лилльском университете, где занимался исследованием брожения. В 1867 году переехал в Сорбонну, где занимал должность профессора химии, а с 1888 года и до конца жизни возглавлял Институт Пастера в Париже.
Наиболее важное достижение Пастера в области химии — это открытие оптических изомеров: химических соединений-двойников, имеющих одинаковую формулу, но вращающих плоскость поляризованного света в противоположных направлениях. Микробиологические работы и эксперименты в области брожения и гниения внесли огромный вклад в борьбу с болезнями: Пастер первый сделал овцам прививку против сибирской язвы, а человеку против бешенства.