Интерференционная картина в интерферометре майкельсона. Принцип действия оптических интерферометров. Интерферометры Майкельсона, Жамена, Фабри-Перо. Интерференция монохроматических волн в направлении оси интерферометра

Оптические интерферометры применяются для изменения оптических длин волн, спектральных линий, показателя преломления поляризационных сред, абсолютных и относительных длин объектов, угловых размеров звезд для контроля качества оптических деталей и их поверхности.

Принцип действия:

Пучок света с помощью различных устройств разделяется на 2 или более когерентных пучков, которые проходят различные оптические пути, затем сводятся вместе и наблюдается результат их интерференции.

Вид интерференционной картины зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, оптической разности хода, относительной интенсивности, размеров источника, спектрального состава света.

По числу интерферометры пучков оптические интерферометры можно разделить:

Двухлучевые и многолучевые.

Многолучевые интерферометры используются как спектральные приборы, для исследования спектрального состава света.

Двухлучевые можно использовать для измерения физических технических измерений.

Майкельсона: Параллельный пучок света от источника, проходя через О1 попадает на полупрозрачную пластинку P1 и разделяет на два когерентных пучка.

Далее пучок 1 отражается от зеркала M1, 2 пучок – М2. Луч 2 повторно проходит через пластинку P1, 1 не проходит. Оба пучка проходят в направлении AO через объектив О2 и интерферирует в фокальной плоскости диафрагмы D. Наблюдаемая интерференционная картина соответствует интерференции в воздушном слое, образованным зеркалом М2 и мнимым изображением зеркала М1 в пластине P1.

Толщина воздушного слоя l (оптическая разность хода = 2l).

Если зеркало М1 расположено так, что М2 и мнимое изображение М1 параллельны, то интерференционная картина представляет собой полосы равного наклона, локализованные в фокальной плоскости объектива О2. А картина представляет собой концентрические кольца.

Полосы равного наклона образуются при освещении прозрачного слоя постоянной толщины непараллельным пучком монохроматического излучения.

Если М2 и изображение М1 образуют воздушный клин, то возникают полосы равной толщины и представляют собой параллельные линии.

Интерферометр Жамена:

Предназначен для измерения показателей преломления в газах и жидкостях.Пучок монохроматического света S после отражения передней и задней поверхности стеклянной пластинки P1 разделяется на 2 пучка S1 и S2.На пути пучков стоят 2 кюветы К1 и К2, через них пучки отражаются от Р2.Р2 повернуто относительно Р1 .

И попадают в зрительную трубу Т, где интерферируют образуя прямы полосы равного наклона.

Если одну из кювет заполнить веществом с показателем преломления n1, а вторую n2, то по смещению интерференционной картины на число полос m по сравнению с тем случаем когда 2 обе кюветы заполнены (или нет) можно определить n1 и n2,которые связывают Δn.

Δn=(m*λ)/l. Относительная погрешность измерения коэффициента преломления достигает 10 -8 .

Фабри-Перо:

В его состав входят две параллельные пластины Р1 и Р2, на обращенные друг к другу поверхности пластинок нанесены зеркальные покрытия с коэффициентом отражения от 0.85 до 0.98.Параллельный пучок света Sпадающей из объектива О1 в результате многократного отражения от зеркал обретает большое число параллельных когерентных пучков с постоянной разностью хода между соседними пучками.

h- Расстояние между зеркалами,θ- угол отражения пучков от зеркал

Интенсивность этих пучков будет различна. В результате многолучевой интерференции в фокальной плоскости l объектива О2 образуется интерференционная картина, которая имеет форму концентрических колец.Положение максимальной интерференции определяется:

Δ=mλ, m – целое число

Интерферометр Фабри-Перо применяется в качестве прибора высокой разрешающей способности.Разрешающая способность зависит от коэффициента отражения зеркал, от расстояния между зеркалами и возрастает с их увеличением.

Минимальный разрешающий интервал длин волн 5*10 -5 нм.Специальные способности интерферометра фабри-перо используются для исследования спектров в ИК, видимом и и сантиметровой частях диапазона длин волн.Разностью интерферометра ФП является оптический резонатор лазеров, излучающая среда которых располагается между зеркалами.

Если допустить, что между зеркалами нормально к ним располагается ЭМ плоская волна, то в результате отражения ее от зеркал образуется стоячие волны, возникает резонанс.

h – целое число полуволн, m- продольный индекс колебаний или продольная мода.

Собственные частоты оптического резонатора образуют арифметическую прогрессию, которая равна – c/2*h (шаг)

Разность частот между двумя соседними продольными модами в излучении лазера зависит от расстояния между зеркалами резонатора:

Перемещение одного из зеркал на Δf приводит к изменению разностной частоты:

Δf=с* Δh/2h 2 .

Оно может быть измерено с помощью фотоприемника.

В отличие от звездного интерферометра спектральный интерферометр основан на явлении интерференции при делении амплитуд (разд. 1.4). Основы его конструкции разработаны Майкельсоном в 1881 г. в связи с экспериментом по проверке возможности движения Земли относительно эфира. С этой целью он совместно с И. В. Морли (исторический опыт Майкельсона-Морли) намеревался создать прибор большого размера. Но основные схемные решения были использованы для измерения спектральных длин волн (позднее для эталонирования метра в единицах длины волны красной линии кадмия) и изучения тонкой структуры спектра. Именно эти спектроскопические приложения сохраняют свое значение и даже становятся все более важными в наши дни.

Рис. 6.5. Спектральный интерферометр Майкельсона. а - общий вид схемы (отражение на стеклянных пластинках О и С не показано); б - разность путей между отраженными лучами в - вид интерференционных полос для квазимонохроматического света.

На рис. 6.5, а схематично показано устройство одного из первых вариантов интерферометра. Свет от источника S (обычно протяженного) делится по амплитуде задней поверхностью стеклянной пластинки О с полупрозрачным серебряным покрытием на два пучка, один из которых отражается, а другой пропускается. Отраженный пучок достигает зеркала и после этого возвращается, частично проходя через О в телескоп Т. В то же время другой пучок, который вначале прошел через делитель пучка, поступает на зеркало и также возвращается к О, откуда он частично отражается к телескопу. Поскольку идущий к пучок проходит через пластинку О в общей сложности три раза по сравнению с одним разом для пучка, идущего к , то обычно в точку С помещается компенсирующая пластинка той же толщины и из того же материала, что и О. В общем случае и находятся на различных расстояниях от О и между двумя лучами преднамеренно вводится разность хода (компенсирующая пластинка предназначена только для выравнивания дисперсионного хода через стекло). Соединившись вместе, два пучка создают интерференцию, результат которой определяется разностью хода между ними.

Зеркала и размещаются взаимно перпендикулярно друг другу, а делитель пучка - под углом 45° к ним. При наблюдении в телескоп изображение формируемое О, располагается параллельно (или совпадает с ним) в Поэтому наблюдаемая в телескоп интерференционная картина похожа на картину с одной пластинкой на рис. 1.8, хотя в представленном примере она получается при отражении от воображаемой «воздушной пластинки». Лучи от протяженного источника с длиной волны X поступают на систему в широком диапазоне углов, и потому образуются яркие концентрические кольца (рис. 6.5, в) (ср. с рис. 1.8, б).

Окружности соответствуют направлениям с углами для которых возникает усиление при сложении пар волновых цугов. Это условие определяется выражением

где m - целое или нуль, расстояние между зеркалами (рис. 6.5, б). При этом предполагается, что два интерферирующих пучка одинаковым образом меняют фазу на делителе пучка. Если это условие не выполняется, то к разности фаз, связанной с разностью хода, должна быть добавлена постоянная величина. Соответственно смещаются и все интерференционные полосы.

Одно из зеркал ( на рисунке) может поступательно перемещаться в указанном направлении. Изменение h приводит к расширению или сжатию картины колец; при увеличении h кольца расходятся от своего центра, как будто бы они там и возникают, а при уменьшении h они сжимаются к центру.

Выражение для радиального распределения интенсивности в направлении от центра дифракционной картины при заданных значениях h и длины волны к легко получить путем известного нам метода векторных диаграмм. Если, например, амплитуды излучения, поступающего в телескоп двумя пуглмл, сделаны равными, скажем, А, то результирующая интенсивность в направлении 0 системы колец определяется выражением

с разностью фаз

В результате получаем

Поэтому для идеального монохроматического излучения интерференционные полосы имеют вид как показано на рис. 6.6, а. Кроме того, из упомянутой выше зависимости картины колец от изменения h следует, что при постепенном уменьшении или увеличении h детектирующее устройство в любой точке картины (оно может располагаться на оси, т. е. будет регистрировать синусоидальное изменение интенсивности. Если бы излучение было полностью монохроматичным, то цуги волн имели бы бесконечную длину (разд. 4.6) и синусоидальная картина функции видности не зависела бы от влияния разности хода, обусловленной интерферирующими пучками света. Если бы такая

Рис. 6.6. а - интерференционные полосы типа б - результат Майкельсона для линии .

картина наблюдалась на самом деле, то можно было бы заключить, что излучение полностью монохроматично. Если же, наоборот, функция видности от другого источника излучения падает до нуля всякий раз, когда вносится разность хода, то можно считать, что излучение источника имеет широкий спектр, поскольку волновые цуги должны быть коротки (разд. 4.6). Именно такой количественный подход к анализу оптических спектров и является основой для использования интерферометрического метода.

Рассмотрим другой гипотетический пример. Предположим, что исследуемое излучение представляет собой комбинацию двух полностью монохроматических излучений с близкими длинами волн . В этом случае изменяющаяся картина интенсивности, регистрируемая нашим детектором, сложнее, чем в приведенном выше примере монохроматического излучения на одной длине волны. Для заданного положения детектора найдутся такие значения h, при которых кольца двух систем почти или совершенно точно совпадают и детектор регистрирует более сильный сигнал. Это происходит, например, при h, равном такому что

где и q - целые. (На практике, если разность мала, две системы колец при таком значении h будут полностью совпадать в достаточно широком интервале углов.)

Увеличение (или уменьшение) h вновь вызывает разделение двух

групп колец, хотя и незначительное, и детектор регистрирует последовательное прохождение максимума меньшей интенсивности и ненулевого минимума. Характер изменения сигнала будет определяться разностью двух длин волн, их относительной интенсивностью излучения, а также в конкретных примерах формой линии и ее тонкой структурой. Поскольку две системы колец движутся от (или в направлении) центра картины в различном темпе [см. уравнение (6.14)], то достигается значение при котором вновь происходит «совпадение» и сигнал на детекторе опять возрастает. В этом случае одна из последовательностей колец опережает другую на один целый интервал между интерференционными полосами. Это условие можно выразить в виде

где к - некоторое число.

Этот способ использования интерферометра аналогичен более ранним наблюдениям Физо , обнаружившего в опыте с кольцами Ньютона, что кольца 500-го порядка от натриевого источника почти полностью исчезают (т.е. видность равна нулю), но снова обретают свою четкость на 1000-м порядке. Он заключил, что излучение натрия представлено дублетом, для которого кольцо 1000-го порядка на большей длине волны совпадает с кольцом 1001-го порядка на меньшей длине волны, и поэтому разность длин волн двух линий составляет около 1/1000 от их среднего значения.

Однако Майкельсон понимал, что при таком методе анализа теряется много информации. Он сделал визуальные оценки (выраженные в количественном масштабе с помощью отдельного изощренного калибровочного эксперимента) видности интерференционных полос в зависимости от перемещения зеркала. Он осознавал, что «кривая видности» содержит очень детальную информацию о спектре источника света.

Уже в 1887 г. Майкельсон ом на основе тщательных наблюдений было показано, что «красная линия водорода является очень тесным дублетом; то же самое относится к зеленой линии таллия».

Проведенное им математическое исследование этих вопросов наряду с важным вкладом, внесенным опубликованной вскоре после этого работой Рэлея, рассматриваются в следующем разделе, поскольку они служат отправной точкой для введения в основы метода преобразования Фурье.

Имеется много разновидностей интерференционных приборов, называемых интерферометрами. На рис. 123.1 изображена схема интерферометра Майкельсона. Пучок света от источника 5 падает на полупрозрачную пластинку покрытую тонким слоем серебра (этот слой показан на рисунке точками). Половина упавшего светового потока отражается пластинкой в направлении луча 1, половина проходит сквозь пластинку и распространяется в направлении луча 2. Пучок 1 отражается от зеркала и возвращается к где он делится на два равных по интенсивности пучка. Один из них проходит сквозь пластинку и образует пучок 1, второй отражается в направлении к S; этот пучок нас интересовать больше не будет. Пучок 2, отразившись от зеркала тоже возвращается к пластинке где он делится на две части: отразившийся От полупрозрачного слоя пучок 2 и прошедший сквозь слой пучок, которым мы также интересоваться больше не будем. Пучки света 1 и 2 имеют одинаковую интенсивность.

При соблюдении условий временной и пространственной когерентности пучки 1 и 2 будут интерферировать. Результат интерференции зависит от оптической разности хода от пластинки до зеркал и обратно. Луч 2 проходит толщу пластинки трижды, луч 1 - только один раз. Чтобы скомпенсировать возникающую за счет этого разную (вследствие дисперсии) для различных длин волн оптическую разность хода, на пути луча 1 ставится точно такая, как но не посеребренная пластинка Тем самым уравниваются пути лучей и 2 в стекле. Интерференционная картина наблюдается с помощью зрительной трубы Т.

Заменим мысленно зеркало его мнимым изображением в полупрозрачной пластинке Тогда лучи 1 и 2 можно рассматривать как возникшие за счет отражения от прозрачной пластинки, ограниченной плоскостями . С помощью котировочных винтов можно изменять угол между этими плоскостями, в частности их можно устанавливать строго параллельно друг другу. Вращая микрометрический винт можно плавно перемещать зеркало не изменяя его наклона.

Тем самым можно изменять толщину «пластинки», в частности можно заставить плоскости пересечься друг с другом (рис. 123.1,6).

Характер интерференционной картины зависит от юстировки зеркал и от расходимости пучка света, падающего на прибор. Если пучок параллелен, а плоскости образуют угол, не равный нулю, то в поле зрения трубы наблюдаются прямолинейные полосы равной толщины, расположенные параллельно линии пересечения плоскостей . В белом свете все полосы, кроме совпадающей с линией пересечения полосы нулевого порядка, будут окрашенными. Нулевая полоса оказывается черной, так как луч отражается от пластинки снаружи, а луч 2 - изнутри, вследствие чего между ними возникает разность фаз, равная белом свете полосы наблюдаются лишь при малой толщине «пластинки» (см. (122.5)). В монохроматическом свете, соответствующем красной линии кадмия, Майкельсон наблюдал отчетливую интерференционную картину при разности хода порядка 500 000 длин волн (расстояние между составляет в этом случае приблизительно 150 мм).

При слегка расходящемся пучке света и строго параллельном расположении плоскостей и МЬ. получаются полосы равного наклона, имеющие вид концентрических колец. При вращении микрометрического винта кольца увеличиваются или уменьшаются в диаметре. При этом в центре картины либо возникают новые кольца, либо уменьшающиеся кольца стягиваются в точку и затем исчезают. Смещение картины на одну полосу соответствует перемещению зеркала на половицу длины волны.

С помощью описанного выше прибора Майкельсон осуществил несколько вошедших в историю физики экспериментов. Самый знаменитый из них, выполненный совместно с Морли в 1887 г., преследовал цель обнаружить движение Земли относительно гипотетического эфира (об этом опыте мы расскажем в § 150). В 1890-1895 гг. с помощью изобретенного им интерферометра Майкельсон произвел первое сравнение длины волны красной линии кадмия с длиной нормального метра.

В 1920 г. Майкельсон построил звездный интерферометр, с помощью которого он измерил угловые размеры некоторых звезд. Этот прибор монтировался на телескопе. Перед объективом телескопа устанавливался экран с двумя щелями (рис. 123.2).

Свет от звезды отражался от симметричной системы зеркал установленных на жесткой раме, укрепленной на тележке. Внутренние зеркала были неподвижны, а внешние могли симметрично смещаться, удаляясь от зеркал либо приближаясь к ним. Ход лучей ясен из рисунка. В фокальной плоскости объектива телескопа возникали интерференционные полосы, видность 1 которых зависела от расстояния между внешними зеркалами. Перемещая эти зеркала, Майкельсон определял расстояние между ними при котором видность полос обращалась в нуль. Это расстояние должно быть порядка радиуса когерентности световой волны, пришедшей от звезды. Согласно (120.14) радиус когерентности равен Из условия получается угловой диаметр звезды

Применение явления интерференции.

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны l 0 . Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн(интерференционная спектроскопия).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики ) и получения высокоотражающих покрытий. Прохожде­ние света через каждую преломляющую поверхность линзы, например через границу стекло–воздух, сопровождается отражением »4% падающего потока (при показа­теле преломления стекла »1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.

Для устранения указанных недостатков осуществляют так называемое просветле­ние оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показателем преломления, меньшим, чем у материала линзы.

Явление интерференции также применяется в очень точных измерительных прибо­рах, называемых интерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно.

Российский физик В. П. Линник (1889-1984) использовал принцип действия ин­терферометра Майкельсона для создания микроинтерферометра (комбинация интерфе­рометра и микроскопа), служащего для контроля чистоты обработки поверхности.

Интерферометры - очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров .


ИНТЕРФЕРОМЕТР МАЙКЕЛЬСОНА - двухлучевой интерферометр, оптич. схема которого позволяет осуществлять разл. виды интерферен­ции, широко используется в физ. исследованиях и в разл. техн. измерит, приборах для измерения длин, смещений, для исследования качества оптич. деталей, систем и т. п. С помощью И. М. впервые определена длина волны света и осуществлён Майкелъсоном. И. М. применяется также как спектральный прибор большой светосилы и высокой разрешающей способности, обладающий и рядом др. преимуществ.

При плавном изменении разности хода интерферирующих пучков на λ 0 /2 интерференционная картина сместится настолько, что на месте максимумов окажутся минимумы. Поэтому явление интерференции используют в интерферометрах для измерения длины тел, длины световой волны, изменения длины тела при изменении температуры, сравнимых с λ 0



В интерферометре Майкельсона монохроматический луч от источника S разделяется на полупрозрачной пластинке Р х на два луча 1" и 2", которые, отразившись от зеркал М 1 и М 2 , снова с помощью Р 1 сводятся в один пучок, в котором лучи 1" и 2" формируют интерференционную картину. Компенсационная пластинка Р 2 размещается на пути луча 2, чтобы он так же, как и луч 1, дважды прошел через пластинку. Возникающая интерференционная картина чрезвычайно чувствительна к любому изменению разности хода лучей, (например, к смещению одного из зеркал).

Рассмотрим вначале подробнее одну схему, на которой очень отчетливо выступают все наиболее существенные детали интерференционной схемы.

Эта схема, известная под названием билинзы Бийе, осуществляется с помощью линзы, разрезанной по диаметру; обе половины слегка разводятся, благодаря чему получаются два действительных изображения S 1 и S 2 светящейся точки S . Прорезь между полулинзами закрывается экраном К (рис. 7.1).

Интерференция наблюдается в области, где перекрываются оба световых потока, идущих от S 1 и S 2 . Точка М интерференционного поля имеет освещенность, зависящую от разности хода двух интерферирующих лучей. На этой схеме ясно видно, что интерферирующие световые потоки задаются размерами телесных углов Ω, величина которых зависит от угла 2φ = между лучами, определяющими перекрывающиеся части пучков.

Этот угол 2φ мы назовем апертурой перекрывающихся пучков. Максимальное значение угла 2φ соответствует условию S 1 Q 1 || S 2 Q 2 и S 1 R 1 || S 2 R 2 ; при этом экран расположен в бесконечности. Обычно угол 2φ несколько меньше, ибо экран располагается на конечном расстоянии D , хотя и большом по сравнению с S 1 S 2 Величина апертуры 2φ определяет собой угловые размеры поля интерференции, средняя освещенность которого зависит от яркости и угловых размеров изображений источника S 1 и S 2 . Полный поток, проходящий через поле интерференции, пропорционален площади этого поля и, следовательно, углу 2φ . В интерференционном поле благодаря интерференции происходит перераспределение освещенности - образуются интерференционные полосы.

Угол 2ω между соответствующими лучами, идущими от S через каждую из двух ветвей интерферометра к М , представ ляет собой угол раскрытия лучей, определяющий интерференционный эффект в точке М . Практически то же значение имеет этот угол и для любой другой точки интерференционного поля. Этот угол мы будем называть апертурой интерференции. Ему соответствует в поле интерференции угол схождения лучей 2ω , величина которого связана с углом 2ω правилами построения изображений. При неизменном расстоянии до экрана 2ω тем больше, чем больше 2ω.

Существуют весьма многочисленные устройства, осуществляющие расположения, необходимые для получения интерференционных картин. Одним из приборов такого рода является интерферометр Майкельсона, сыгравший громадную роль в истории пауки.

Основная схема интерферометра Майкельсона изображена на рис. 7.2. Пучок от источника L . падает па пластинку P 1 , покрытую тонким слоем серебра или алюминия. Луч АВ , прошедший через пластинку P 2 отражается от зеркала S 1 , и, попадая опять па пластинку P 1 частично проходит через нее, а частично отражается по направлению АО . Луч AC отражается от зеркала S 2 , и, попадая па пластинку P 1 , частично проходит также по направлению АО . Так как обе волны 1 и 2 , распространяющиеся по направлению АО , представляют собой расчлененную волну, исходящую из источника L , то они когерентны между собой и могут интерферировать друг с другом. Так как луч 2 пересекает пластинку P 1 три раза, а луч 1 - один раз, то на его пути поставлена пластинка P 2 , идентичная Р 1 ; чтобы скомпенсировать добавочную разность хода, существенную при работе с белым светом.

Наблюдаемая интерференционная картина будет, очевидно, соответствовать интерференции в воздушном слое, образованном зеркалом S 2 и мнимым изображением S 1 " зеркала S 1 в пластинке Р 1 . Если S 1 , и S 2 расположены так, что упомянутый воздушный слой плоскопараллелен, то получающаяся интерференционная картина представится полосами равного наклона (круговыми кольцами), локализованными в бесконечности, и следовательно, наблюдение их возможно глазом, аккомодированным на бесконечность (или трубой, установленной на бесконечность, или на экране, расположенном в фокальной плоскости линзы).

Конечно, можно пользоваться и протяженным источником света. При малой толщине воздушного слоя в поле зрения зрительной трубы наблюдаются редкие интерференционные кольца большого диаметра. При большой толщине воздушного слоя, т. е. большой разности длин плеч интерферометра, наблюдаются частые интерференционные кольца малого диаметра уже около центра картины. Угловой диаметр колец в зависимости от разности длин плеч интерферометра и порядка интерференции определяется из соотношения 2d соsr = . Очевидно, что перемещение зеркала на четверть длины волны будет соответствовать при малых значениях угла r переходу в поле зрения светлого кольца на место темного, и наоборот, темного на место светлого.

Передвижение зеркала осуществляется при помощи микрометрического винта, перемещающего зеркало на специальных салазках. Так как в больших интерферометрах Майкельсона перемещение зеркала параллельно самому себе должно происходить на несколько десятков сантиметров, то понятно, что механические качества этого прибора должны быть исключительно высоки.

Для придания зеркалам правильного положения они снабжены установочными винтами. Нередко зеркала устанавливают таким образом, что эквивалентный воздушный слой имеет вид клина. В таком случае наблюдаются интерференционные полосы равной толщины, располагающиеся параллельно ребру воздушного клина.

При больших расстояниях между зеркалами разность хода между интерферирующими лучами может достигать огромных значений (свыше 10 6 λ), так что будут наблюдаться полосы миллионного порядка.

Понятно, что в этом случае необходимы источники света очень высокой степени монохроматичности.