В чем состоит предназначение миелиновой оболочки. Медицинские препараты для восстановления нервных тканей. Практика, нервная активность и синтез миелина

Гиления лучше в снижении частоты рецидивов, чем такфидера или абаджио. Согласно исследованию Gilenya (финголимод) связана со значительно более низкими показателями рецидивов в годовом исчислении у пациентов с ремиттирующим рассеянным склерозом по сравнению с Tecfidera (диметилфумарат) или Aubagio (терифлуномид). Все три терапии показали схожее влияние на инвалидизацию.

Исследование «Сравнение финголимода, диметилфумарата и терифлуномида при рассеянном склерозе» было опубликовано в журнале неврология, нейрохирургия и психиатрия (Journal of Neurology , Neurosurgery , and Psychiatry ).

Пероральная иммунотерапия Novartis Gilenya , Biogen Tecfidera и Sanofi Genzyme Aubagio , в настоящее время является стандартной терапией для лечения РРС. Но хотя эти методы лечения эффективны для изменения активности РС, исследование, сравнивающее их эффективность между собой отсутствует. Для пациентов же с РС это очень важный момент, потому что если необходимо изменить препарат (например, из-за отсутствия толерантности), решение о более подходящей терапии должно основываться на научных данных.

Чтобы решить эту проблему, группа исследователей использовала международное обсервационное «когортное» исследование РС-а (an international observational MS cohort study ), идентифицировала пациентов с РРС, которых лечили Gilenya , Tecfidera или Aubagio и не менее трех месяцев.

Тремор - это непроизвольные, неконтролируемые движения частей тела.

Пациент может испытывать тремор как подергивание или дрожание, дрожащие движения. Тремор является распространенным симптомом, который встречается во многих неврологических состояниях, включая болезнь Паркинсона и РС. Он так же может появляться в семьях при отсутствии нейронных травм, заболеваний и предрасположенности. При рассеянном склерозе тремор обычно связан с атаксией, которая представляет собой проблему с координацией движений тела.

При рассеянном склерозе наиболее распространенным типом тремора является тремор намерения или мозжечковый тремор. Это тремор, который усиливается при использовании пораженной конечности, например, когда дрожит рука, если пациент достигает какого-либо предмета или пытается коснуться своего носа. У некоторых людей с РС может возникнуть постуральный тремор, это когда пациент удерживает определенную осанку, например, сидит в вертикальном положении.

Другое названия: натализумаб.

Тисабри - это препарат изменяющий течение рассеянного склероза (ПИТРС) для очень активного рецидивирующего-ремиттирующего РС.

Пациент принимает Tysabri в виде внутривенной инфузии (капельница) один раз в четыре недели, препарат уменьшает количество и тяжесть рецидивов. Считается что тизабри уменьшает количество рецидивов примерно на 2\3 (70%) по сравнению с приемом плацебо.

Общие побочные эффекты препарата включают головокружение, тошноту, крапивницу (кожную сыпь) и дрожь.

Лечение при помощи Tysabri может увеличить риск прогрессирующей мультифокальной лейкоэнцефалопатии (PML) - редкой инфекции мозга, которая может привести к тяжелой инвалидности или даже смерти.

Нервная система разделяется на центральную нервную систему (ЦНС) и периферическую нервную систему (см. рис. 1). Центральная нервная система состоит из головного мозга и спинного мозга.
Головной мозг в свою очередь состоит из больших полушарий головного мозга, мозжечка и ствола мозга. Периферическая нервная система представляет собой нервные волокна и узлы, отходящие от центральной нервной системы (ЦНС) и распространяющиеся по всему организму. При этом по чувствительным нервным волокнам импульсы возбуждения от любой ткани, любого органа передаются в центральную нервную систему, подвергаются здесь определенной переработке и по двигательным и секреторным нервным волокнам соответствующий импульс поступает в исполнительный орган - мышцу, сосуд, железу и т. п. Ощущения, которые возникают при возбуждении органов чувств и воздействии на кожу, мышцы и суставы, также передаются по нервным волокнам в центральную нервную систему, где они сознательно или бессознательно фиксируются.

Белое и серое вещество

В головном и спинном мозге различают так называемые серое и белое вещества. В сером веществе расположены клеточные тела нейронов. Основная функция нейронов - восприятие раздражении, их переработка, передача этой информации и формирование ответной реакции. От тела каждой нервной клетки отходит длинный отросток (аксон), по которому нервные импульсы идут от тела клетки к иннервируемым органам и другим нервным клеткам. Аксоны покрыты миелиновой (мякотной) оболочкой, толщина которой зависит от функции нерва. Миелиновая оболочка состоит из белково-липидного комплекса (миелина) белого цвета. Совокупность нервных волокон головного и спинного мозга называют белым веществом центральной нервной системы.

При рассеянном склерозе повреждается миелиновая оболочка нервных волокон. Миелиновая оболочка служит для быстрой передачи электрического нервного импульса. В нервных волокнах нервный импульс распространяется довольно медленно. Миелиновая оболочка, являясь изолятором, предотвращает рассеивание нервных импульсов и их переход на другие нервные волокна. Миелиновое покрытие по длине волокна имеет сегментарное строение; на границе двух сегментов имеются участки безмиелиновых перетяжек - так называемые узлы нервного волокна или перехваты Ранвье. За счет этого нервный импульс распространяется по мякотному волокну не непрерывно, как по безмякотному, а быстрее - скачками: электрические импульсы перепрыгивают от одного перехвата Ранвье к другому (рис. 2), таким образом скорость распространения нервных импульсов в мякотных волокнах выше, чем в безмякотных. Если в результате болезни какой-то участок миелиновой оболочки повреждается, нервные импульсы на этом участке проходят по лишенному миелиновой оболочки аксону, и значит скорость их прохождения замедляется; функции на этом нервном пути осуществляются медленнее и в измененном виде.
Тела нейронов и нервные проводники-аксоны окружают глиальные клетки, которые выполняют в центральной нервной системе опорную функцию, а также участвуют в метаболизме нервных клеток. Они отличаются высоким уровнем белкового и нуклеинового обмена и ответственны за транспорт веществ в нейроны. Глиальные клетки участвуют в образовании миелиновых оболочек аксонов. Миелиновая оболочка состоит из миелина, включающего в свой состав протеины, липиды, жиры и содержащие сахар белки.
Функции в центральной нервной системе строго локализованы, отдельные нервные пути, т. е. пучки нервных волокон выполняют вполне определенные задачи и связаны с восприятием информации от определенного органа чувств. Разные функции организма регулируются различными частями нервной системы. Каждая совокупность нервных клеток отвечает за восприятие одного вида чувствительности. И если одна совокупность нервных клеток ведает регуляцией вегетативных реакций, то двигательные импульсы передает другая совокупность нервных клеток. Причем, скажем, двигательные импульсы, соответствующие конкретному движению, передаются нервными волокнами с определенного участка коры головного мозга в любой доле мозга отдельно для движений, осуществляемых правой и левой половиной тела. Эти нервные волокна объединяются в общий так называемый двигательный пирамидный путь. Он включает в свой состав определенные нервные волокна, ответственные за каждое конкретное движение, и обеспечивает передачу соответствующей импульсации исполнительному органу - определенным мышцами. При этом за каждое конкретное движение ответственно не одно единственное нервное волокно, а целый пучок нервных волокон. И если в результате болезни часть нервных волокон в таком пучке повреждается, он утрачивает способность выполнять свои функции. Соответственно утрачивается способность совершать то движение, за которое отвечал поврежденный пучок нервных волокон, т. е. происходит ограничение определенной физической возможности больного человека. И если пучок нервных волокон повреждается целиком, то функция утрачивается полностью, как это происходит, например, при поперечном параличе в результате несчастного случая.
Кроме нервных путей, осуществляющих прямую передачу импульсов, как, к примеру, уже упомянутый пирамидный путь, в центральной нервной системе имеются многочисленные нервные пути, которые регулируют осуществление отдельных движений или восприятие определенных ощущений. Так становятся возможными сложные двигательные акты, требующие четкой координации и тонкой дифференцированности. При этом восприятие ощущений, передаваемых одним органом чувств, становится доминирующим, а восприятие ощущений через другой орган чувств становится второстепенным, или важные впечатления могут быть отделены от незначительных.
В целом нервная система регулирует всю деятельность организма и обеспечивает его связь с окружающей средой. Нервная система осуществляет регулирующее влияние на обменные процессы в тканях, деятельность сердечной мышцы и системы кровообращения, дыхательную функцию, работу мочевого пузыря, желудочно-кишечного тракта, на образование гормонов. Деятельность нервной системы обусловливает состояние относительного равновесия внутренней среды организма.

Спинномозговая жидкость

В центральной нервной системе существует несколько переходящих одна в другую полостей, совокупность которых образует систему - своего рода жидкостную ось мозга. Она включает в себя две полости в больших полушариях мозга, по одной в центральной части мозга и между продолговатым мозгом и мозжечком, а также центральный канал спинного мозга. В желудочках мозга, в субарахноидальном пространстве и в центральном канале спинного мозга циркулирует ликвор - спинномозговая жидкость, которая участвует в обмене веществ между кровеносной и нервной системами.
Между кровеносными сосудами нервной системы и самой нервной тканью существует барьер, именуемый гематоэнцефалическим барьером, который защищает центральную нервную систему от проникновения чужеродных веществ или продуктов нарушенного обмена веществ, вызывающих болезнь. Но в небольшой концентрации вещества, вызывающие болезнь, все же могут проникнуть в нервную ткань. С другой стороны многие вещества, которые образуются в результате заболевания нервной системы, хотя и попадают в ликвор, не обнаруживаются в крови. Особенно важно это учитывать при патологических изменениях, вызванных воспалительными процессами в нервной системе. Поэтому при установлении диагноза рассеянный склероз такое большое значение приобретает исследование спинномозговой жидкости.

Нервная система человека и позвоночных животных имеет единый план строения и представлена центральной частью – головным и спинным мозгом, а также периферическим отделом – отходят от центральных органов нервами, что представляют собой отростки нервных клеток – нейронов.

Их совокупность образует нервную ткань, главными функциями которой являются возбудимость и проводимость. Эти ее свойства объясняются прежде всего особенностями строения оболочек нейронов и их отростков, состоящих из вещества, называемого миелином. В данной статье мы рассмотрим строение и функции этого соединения, а также выясним возможные способы его восстановления.

Почему нейроцити и их отростки покрыты миелином

Совсем не случайно дендриты и аксоны имеют защитный слой, состоящий из белково-липидных комплексов. Дело в том, что нарушение является биофизическим процессом, в основе которого лежат слабые электрические импульсы. Если электрический ток идет по проводу, то последний должен быть покрыт изоляционным материалом, чтобы уменьшить рассеивание электрических импульсов и не допустить снижение силы тока. Такие же функции в нервном волокне выполняет миелиновая оболочка. Кроме того, она является опорой, а также обеспечивает питание волокна.

Химический состав миелина

Как и большинство клеточных мембран, он имеет липопротеидную природу. Причем содержание жиров здесь очень высокая – до 75%, а белков – до 25%. Миелин в незначительном количестве содержит также гликолипиди и гликопротеиди. Химический состав его различается в спинномозговых и черепно-мозговых нервах.

В первых наблюдается высокое содержание фосфолипидов – до 45%, а остальное приходится на холестерин и цереброзиди. Демиелинизация (то есть замена миелина на другие вещества в нервных отростках) приводит к таких тяжелых аутоиммунных заболеваний, как, например, рассеянный склероз.

С химической точки зрения, этот процесс будет выглядеть так: миелиновая оболочка нервных волокон меняет свою структуру, что проявляется прежде всего в уменьшении процентного содержания липидов по отношению к белкам. Далее снижается количество холестерина и возрастает содержание воды. А все это приводит к постепенной замене миелина, содержащего олигодендроциты или шванновские клетки макрофаги, астроциты и межклеточную жидкость. Результатом таких биохимических изменений будет резкое снижение способности аксонов проводить возбуждение вплоть до полного блокирования прохождения нервных импульсов.

Особенности нейроглиальних клеток

Как мы уже говорили, миелиновая оболочка дендритов и аксонов образованная специальными структурами, которые характеризуются низкой степенью проницаемости для ионов натрия и кальция, а потому имеют только потенциалы покоя (они не могут проводить нервные импульсы и выполняют электроизоляционные функции). Данные структуры называются глиальными клетками. К ним относятся:

  • олигодендроциты;
  • волокнистые астроциты;
  • клетки епендими;
  • плазматические астроциты.

Все они формируются из наружного слоя зародыша – эктодермы и имеют общее название – макроглия. Глия симпатических, и парасимпатических соматических нервов представлена шванновскими клетками (нейролеммоцитами).

Строение и функции олигодендроцитов

Они входят в состав центральной нервной системы и являются клетками макроглии. Так как миелин – это белково-липидная структура, она способствует увеличению скорости проведения возбуждения. Сами клетки образуют электроизолирующий слой нервных окончаний в головном и спинном мозге, формируясь уже в период внутриутробного развития. Их отростки обертывают в складки своей внешней плазмалеммы нейроны, а также дендриты и аксоны. Получается, что миелин – это основной электроизолирующий материал, который разграничивает нервные отростки смешанных нервов.

Шванновские клетки и их особенности

Миелиновая оболочка нервов периферической системы образована нейролеммоцитами (шванновскими клетками). Их отличительная особенность заключается в том, что они способны образовывать защитную оболочку только одного аксона, и не могут формировать отростки, как это присуще олигодендроцитам. Между шванновскими клетками на расстоянии 1-2 мм располагаются участки, лишенные миелина, так называемые перехваты Ранвье. За ним скачкообразно происходит проведение электрических импульсов в пределах аксона. Леммоцити способны к репарации нервных волокон, а также выполняют трофическую функцию. В результате генетических аберраций клетки оболочки леммоцитов начинают неконтролируемое митотическое деление и рост, в результате чего в разных отделах нервной системы развиваются опухоли – шванномы (невриномы).

Роль микроглии в разрушение миелиновой структуры

Микроглия представляет собой макрофаги, способные к фагоцитозу и умеют распознавать различные патогенные частицы – антигены. Благодаря мембранных рецепторов эти глиальные клетки вырабатывают ферменты – протеазы, а также цитокины, например, интерлейкин 1. Он является медиатором воспалительного процесса и иммунитета. Миелиновая оболочка, функции которой заключаются в изоляции осевого цилиндра и улучшение проведения нервного импульса, может повреждаться интерлейкином. В результате этого, нерв «обнажается» и скорость проведения возбуждения резко снижается.

Более того, цитокины, активируя рецепторы, провоцируют избыточный транспорт ионов кальция в тело нейрона. Протеазы и фосфолипазы начинают расщеплять органеллы и отростки нервных клеток, что приводит к апоптозу – гибели данной структуры. Она разрушается, распадаясь на частицы, которые и пожирают макрофаги. Это явление называется ексайтотоксичностью. Оно вызывает дегенерацию нейронов и их окончаний, приводя к таким заболеваниям, как болезнь Альцгеймера и болезнь Паркинсона.

Мякотные нервные волокна

Если отростки нейронов – дендриты и аксоны, покрывает миелиновая оболочка, то они называются мякотними и иннервируют скелетную мускулатуру, входя в соматический отдел периферической нервной системы. Немиелинизированние волокна образуют вегетативную нервную систему и иннервируют внутренние органы.

Мякотные отростки имеют больший диаметр, чем безмякотние, и формируются следующим образом: аксоны прогибают плазматическую мембрану клеток глии и формируют линейные мезаксони. Затем они увеличиваются и шванновские клетки многократно обворачиваются вокруг аксона, образуя концентрические слои. Цитоплазма и ядро леммоцита перемещаются в область внешнего слоя, который называется неврилеммой или шванновской оболочкой. Внутренний слой леммоцита состоит из слоистого мезоксона и называется миелиновой оболочкой. Толщина ее в различных участках нерва неодинакова.

Как восстановить миелиновую оболочку

Рассматривая роль микроглии в процессе демиелинизации нервов, мы установили, что под действием макрофагов и нейромедиаторов (например, интерлейкинов) происходит разрушение миелина, что в свою очередь приводит к ухудшению питания нейронов и нарушение передачи нервных импульсов по аксонам. Данная патология провоцирует возникновение нейродегенеративных явлений: ухудшение когнитивных процессов, прежде всего памяти и мышления, появление нарушения координации движений тела и тонкой моторики.

В итоге возможна полная инвалидизация больного, которая возникает в результате аутоиммунных заболеваний. Поэтому вопрос о том, как восстановить миелин, в настоящее время стоит особенно остро. К числу таких способов относится прежде всего сбалансированная белково-липидная диета, правильный образ жизни, отсутствие вредных привычек. В тяжелых случаях заболеваний применяют медикаментозное лечение, восстанавливающее количество зрелых глиальных клеток – олигодендроцитов.

Дата публикации: 26.05.17

Миелиновая оболочка нервов на 70-75% состоит из липидов и на 25-30 % - из белков. В состав ее клеток также входит лецитин - представитель фосфолипидов, роль которого очень велика: он принимает участие во многих биохимических процессах, улучшает сопротивляемость организма к токсинам, снижает уровень холестерина.


Употребление продуктов, содержащих лецитин, является хорошей профилактикой и одним из способов лечения заболеваний, связанных с нарушением деятельности нервной системы. Это вещество входит в состав многих круп, сои, рыбы, яичного желтка, пивных дрожжей. Лецитин также содержат: печень, оливки, шоколад, изюм, семечки, орехи, икра, молочные и кисломолочные продукты. Дополнительным источником этого вещества могут быть биологически активные пищевые добавки.


Восстановить миелиновую оболочку нервов можно, включая в диету продукты, содержащие аминокислоту холин: яйца, бобовые, говядина, орехи. Очень полезны омега-3 полиненасыщенные жирные кислоты. Они содержатся в рыбе жирных сортов, морепродуктах, семечках, орехах, льняном масле и льняном семени. Источником омега-3 жирных кислот могут служить: рыбий жир, авокадо, грецкие орехи, фасоль.


В состав миелиновой оболочки входят витамины В1 и В12, поэтому для нервной системы будет полезно включать в рацион ржаной хлеб, цельнозерновые крупы, молочные продукты, свинину, свежую зелень. Очень важно употреблять достаточное количество фолиевой кислоты. Ее источники: бобовые (горох, фасоль, чечевица), цитрусовые, орехи и семечки, спаржа, сельдерей, брокколи, свекла, морковь, тыква.


Восстановлению миелиновой оболочки нервов способствует медь. Ее содержат: кунжут, тыквенные семечки, миндаль, горький шоколад, какао, свиная печень, морепродукты. Для здоровья нервной системы необходимо включать в рацион продукты, содержащие инозитол: овощи, орехи, бананы.


Очень важно поддерживать иммунную систему. При наличии в организме источников хронического воспаления или аутоиммунных заболеваний нарушается целостность нервов. В этих случаях, в дополнение к основной терапии нужно вводить в меню пищевые и травяные противовоспалительные средства: зеленый чай, настои шиповника, крапивы, тысячелистника, а также продукты, богатые витаминами С и Д. Витамин С в большом количестве содержится в цитрусовых, ягодах, киви, капусте, сладком перце, томатах, шпинате. Источниками витамина Д являются яйца, молочные продукты, сливочное масло, морепродукты, жирные сорта рыбы, печень трески и других рыб.


Диета для восстановления миелиновой оболочки нервов должна содержать достаточное количество кальция. Он входит в состав многих продуктов: молоко, сыр, орехи, рыба, овощи, фрукты, крупы. Для полноценного усвоения кальция необходимо включать в рацион магний (содержится в орехах, хлебе грубого помола) и фосфор (содержится в рыбе).

Все липиды, обнаруженные в мозге крысы, присутствуют и в миелине, т. е. нет липидов, локализованных исключительно в немиелиновых структурах (за исключением специфического митохондриального липида дифосфатидилглицерола). Верно и обратное - нет таких липидов миелина, которые не были бы обнаружены в других субклеточных фракциях мозга.

Цереброзид - наиболее типичный компонент миелина. За исключением самого раннего периода развития организма, концентрация цереброзида в мозге прямо пропорциональна количеству в нем миелина. Только 1/5 общего содержания галактолипидов в миелине встречается в сульфатированной форме. Цереброзиды и сульфатиды играют важную роль в обеспечении стабильности миелина.

Для миелина также характерен высокий уровень его главных липидов - холестерина, общих галактолипидов и содержащего этаноламин плазмалогена. Установлено, что до 70% холестерина мозга находится в миелине. Поскольку почти половина белого вещества мозга может состоять из миелина, очевидно, что в мозге содержится наибольшее количество холестерина по сравнению с другими органами. Высокая концентрация холестерина в мозге, особенно в миелине, определяется основной функцией нейрональной ткани - генерировать и проводить нервные импульсы. Большое содержание холестерина в миелине и своеобразие его структуры приводят к уменьшению ионной утечки через мембрану нейрона (вследствие ее высокого сопротивления).

Фосфатидилхолин также является существенной составной частью миелина, хотя сфингомиелин содержится в относительно незначительном количестве.

Липидный состав как серого вещества, так и белого вещества мозга отчетливо отличается от такового у миелина. Состав миелина мозга всех изученных видов млекопитающих почти одинаков; имеют место лишь незначительные различия (например, миелин крысы имеет меньше сфингомиелина, чем миелин быка или человека). Существуют некоторые вариации и в зависимости от локализации миелина, например миелин, изолированный из спинного мозга, имеет более высокое значение отношения липида к белку, чем миелин из головного мозга.

В состав миелина входят также полифосфатидилинозиты, из которых трифосфоинозитид составляет от 4 до 6% общего фосфора миелина, а дифосфоинозитид- от 1 до 1,5%. Минорные компоненты миелина включают по крайней мере три эфира цереброзида и два липида на основе глицерина; в составе миелина также присутствуют некоторые длинноцепочечные алканы. Миелин млекопитающих содержит от 0,1 до 0,3% ганглиозидов. В миелине содержится больше моносиалоганглиозида вМ1 по сравнению с тем, что обнаруживается в мембранах мозга. Миелин многих организмов, в том числе и человека, содержит уникальный ганглиозид сиалозилгалактозилцерамид ОМ4.

Липиды миелина ПНС

Липиды миелина периферической и центральной нервной системы качественно подобны, но между ними есть количественные различия. Миелин ПНС содержит меньше цереброзидов и сульфатидов и значительно больше сфингомиелина, чем миелин ЦНС. Интересно отметить наличие ганглиозида ОМр характерного для миелина ПНС некоторых организмов. Различия в составе липидов миелина центральной и периферической нервной системы не столь существенны, как их различия по белковому составу.

Белки миелина ЦНС

Белковый состав миелина ЦНС более прост, чем других мембран мозга, и представлен главным образом протеолипидами и основными белками, которые составляют 60-80% от общего количества. Гликопротеины присутствуют в гораздо меньших количествах. Миелин центральной нервной системы содержит уникальные белки.

Для миелина ЦНС человека характерно количественное превалирование двух белков: положительно заряженного катионного белка миелина (myelin basic protein, МВР) и протеолипида миелина (myelin proteolipid protein, PLP). Эти белки - главные составные части миелина ЦНС всех млекопитающих.

Миелиновый протеолипид PLP (proteolipid protein), также известный как белок Фолча, имеет способность растворяться в органических растворителях. Молекулярная масса PLP составляет приблизительно 30 кДа (Да - дальтон). Его аминокислотная последовательность чрезвычайно консервативна, молекула формирует несколько доменов. Молекула PLP включает три жирные кислоты, как правило, пальмитиновую, олеиновую и стеариновую, соединенные с аминокислотными радикалами эфирной связью.

Миелин ЦНС содержит несколько меньшие количества другого протеолипида - DM-20, названного так по его молекулярной массе (20 кДа). И анализ ДНК, и выяснение первичной структуры показали, что DM-20 образуется в результате отщепления 35 аминокислотных остатков от белка PLP. В процессе развития DM-20 появляется раньше, чем PLP (в некоторых случаях даже до появления миелина); предполагают, что в дополнение к структурной роли в образовании миелина он может участвовать в дифференцировке олигодендроцитов.

Вопреки представлениям о том, что PLP необходим для формирования компактного мультиламеллярного миелина, процесс образования миелина у мышей, «нокаутированных» по PLP/DM-20, происходит лишь с незначительными отклонениями. Однако у таких мышей уменьшена продолжительность жизни и нарушена общая подвижность. Напротив, естественно происходящие мутации в PLP, в том числе его повышенная экспрессия (normal PLP over-expression), имеют серьезные функциональные последствия. Следует отметить, что существенные количества белков PLP и DM-20 представлены в ЦНС, матричная РНК для PLP есть и в ПНС, и небольшое количество белка там синтезируется, но не включается в миелин.

Катионный белок миелина (МВР) привлекает внимание исследователей вследствие его антигенной природы - при введении животным он вызывает аутоиммунную реакцию, так называемый экспериментальный аллергический энцефаломиелит, который представляет собой модель тяжелого нейродегенеративного заболевания - рассеянного склероза.

Аминокислотная последовательность МВР у многих организмов высоко консервативна. МВР расположен на цитоплазматической стороне миелиновых мембран. Он имеет молекулярную массу 18,5 кДа и лишен признаков третичной структуры. Этот основный белок обнаруживает микрогетерогенность при электрофорезе в щелочных условиях. Большинство исследованных млекопитающих содержали различные количества изоформ МБР, имеющих существенную общую часть аминокислотной последовательности. Молекулярная масса МБР мышей и крыс - 14 кДа. МБР с малой молекулярной массой имеет такие же аминокислотные последовательности на N- и С-терминальных частях молекулы, как и остальной МБР, но отличается редукцией около 40 аминокислотных остатков. Соотношение этих основных белков изменяется в процессе развития: зрелые крысы и мыши имеют больше МБР с молекулярной массой 14кДа, чем МБР с молекулярной массой 18 кДа. Две другие изоформы МБР, также обнаруживаемые во многих организмах, имеют молекулярную массу 21,5 и 17 кДа, соответственно. Они образованы присоединением к основной структуре полипептидной последовательности массой около 3 кДа.

При электрофоретическом разделении белков миелина выявляются белки с более высокой молекулярной массой. Их количество зависит от вида организма. Например, мышь и крыса могут содержать таких белков до 30% от общего количества. Содержание этих белков также изменяется в зависимости от возраста животного: чем оно моложе, тем меньше в его мозге миелина, но тем больше в нем белков с более высокой молекулярной массой.

Фермент 2" 3"-циклический нуклеотид З"-фосфодиэстераза (CNP) составляет несколько процентов от общего содержания миелинового белка в клетках ЦНС. Это гораздо больше, чем в других типах клеток. Белок CNP - не главный компонент компактного миелина, он сконцентрирован лишь в определенных участках миелиновой оболочки, связанной с цитоплазмой олигодендроцита. Белок локализован в цитоплазме, но часть его связана с цитоскелетом мембраны - F-актином и тубулином. Биологическая функция CNP может заключаться в регулировании структуры цитоскелета для ускорения процессов роста и дифференциации в олигодендроцитах.

Миелинассоциированный гликопротеин (MAG) - минорный в количественном отношении компонент очищенного миелина, имеет молекулярную массу 100 кДа, содержится в ЦНС в небольшом количестве (менее 1 % от общего белка). MAG имеет единственный трансмембранный домен, который отделяет сильногликозилированную внеклеточную часть молекулы, составленную из пяти подобных иммуноглобулину доменов, от внутриклеточного домена. Его полная структура подобна белку адгезии нейрональной клетки (NCAM).

MAG не присутствует в компактном, мультиламеллярном миелине, но находится в периаксональных мембранах олигодендроцитов, образующих слои миелина. Напомним, что периаксональная мембрана олигодендроцита - наиболее близко расположена к плазматической мембране аксона, но тем не менее эти две мембраны не сливаются, а разделены экстраклеточной щелью. Подобная особенность локализации MAG, а также то, что этот белок относится к иммуноглобулиновому суперсемейству, подтверждает участие его в процессах адгезии и передачи информации (сигналинга) между аксолеммой и миелинобразующими олигодендроцитами в процессе миелинизации. Кроме того, MAG - один из компонентов белого вещества ЦНС, который ингибирует рост нейритов в культуре ткани.

Из других гликопротеинов белого вещества и миелина следует отметить минорный миелинолигодендроцитарный гликопротеин (Myelin-oligodendrocytic glycoprotein, MOG). MOG является трансмембранным белком, содержащим единственный иммуноглобулинподобный домен. В отличие от MAG, который расположен во внутренних слоях миелина, MOG локализован в его поверхностных слоях, в силу чего может участвовать в передаче внеклеточной информации к олигодендроциту.

Малые количества характерных белков мембран могут быть идентифицированы в результате электрофореза на полиакриламидном геле (ПААГ) (например, тубулин). Электрофорез высокого разрешения демонстрирует наличие других незначительных полос белка; они могут быть связаны с присутствием ряда ферментов миелиновой оболочки.

Белки миелина ПНС

Миелин ПНС содержит как некоторые уникальные белки, так и несколько общих с белками миелина ЦНС белков.

Р0 - главный белок миелина ПНС, имеет молекулярную массу 30 кДа, составляет более половины белков миелина ПНС. Интересно отметить, что хотя он отличается от PLP по аминокислотной последовательности, путям посттрансляционной модификации и структуре, тем не менее оба эти белка имеют одинаково важное значение для формирования структуры миелина ЦНС и ПНС.

Содержание МВР в миелине ПНС составляет 5-18% от общего количества белка, в отличие от ЦНС, где его доля достигает трети всего белка. Те же четыре формы белка МВР с молекулярными массами 21, 18,5, 17 и 14кДа, соответственно, обнаруженные в миелине ЦНС, присутствуют и в ПНС. У взрослых грызунов МВР с молекулярной массой 14 кДа (по классификации периферийных миелиновых белков ему присвоено название «Рr») является самым значительным компонентом всех катионных белков. В миелине ПНС присутствует и МВР с молекулярной массой 18 кДа (в этом случае он носит название «белок Р1»). Следует отметить, что важность семейства белков МВР не так велика для миелиновой структуры ПНС, как для ЦНС.

Гликопротеины миелина ПНС

Компактный миелин ПНС содержит гликопротеин с молекулярной массой 22 кДа, названный периферийным миелиновым белком 22 (РМР-22), доля которого составляет менее 5% от общего содержания белков. РМР-22 имеет четыре трансмембранных домена и один гликозилированный домен. Этот белок не играет значительной структурной роли. Однако аномалии гена рmр-22 ответственны за некоторые наследственные невропатологии человека.

Несколько десятилетий назад считалось, что миелин создает инертную оболочку, которая не выполняет никаких биохимических функций. Однако позже в миелине было обнаружено большое количество ферментов, вовлекаемых в синтез и метаболизм компонентов миелина. Ряд ферментов, присутствующих в миелине, включается в метаболизм фосфоинозитидов: фосфатидилинозитолкиназа, дифосфатидилинозитолкиназа, соответствующие фосфатазы и диглицеридкиназы. Эти ферменты представляют интерес вследствие высокой концентрации в миелине полифосфоинозитидов и их быстрого обмена. Есть свидетельства присутствия в миелине мускариновых холинергических рецепторов, G-белков, фосфолипаз С и Э, протеинкиназы С.

В миелине ПНС обнаружена Nа/К-АТФаза, осуществляющая транспорт одновалентных катионов, а также 6"-нуклеотидаза. Наличие этих ферментов позволяет предположить, что миелин может принимать активное участие в аксональном транспорте.