Физические вопросы, на которые должна отвечать теория струн и петлевая квантовая гравитация. Петлевая квантовая теория Петлевая квантовая

Физик-теоретик Сабина Хоссенфельдер из Стокгольма посчитала двух альтернативных претендентов на «теорию всего» (теорию струн и петлевую квантовую гравитацию) сторонами одной медали. По ее мнению, в настоящее время петлевая квантовая гравитация достигла большого прогресса. Об этом ученый рассказала на страницах онлайн-издания Quanta Magazine.

Теория струн

Тео?рия струн - направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.

Теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10?35 м. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени. Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано, связанных со струнными моделями строения адронов. Середина 1980-х и середина 1990-х ознаменовались бурным развитием теории струн, ожидалось, что в ближайшее время на основе теории струн будет сформулирована так называемая «единая теория», или «теория всего», поискам которой Эйнштейн безуспешно посвятил десятилетия. Но, несмотря на математическую строгость и целостность теории, пока не найдены варианты экспериментального подтверждения теории струн. Возникшая для описания адронной физики, но не вполне подошедшая для этого, теория оказалась в своего рода экспериментальном вакууме описания всех взаимодействий.

Одна из основных проблем при попытке описать процедуру редукции струнных теорий из размерности 26 или 10 в низкоэнергетическую физику размерности 4 заключается в большом количестве вариантов компактификаций дополнительных измерений на многообразия Калаби - Яу и на орбифолды, которые, вероятно, являются частными предельными случаями пространств Калаби - Яу. Большое число возможных решений с конца 1970-х и начала 1980-х годов создало проблему, известную под названием «проблема ландшафта», в связи с чем некоторые учёные сомневаются, заслуживает ли теория струн статуса научной.

Несмотря на эти трудности, разработка теории струн стимулировала развитие математических формализмов, в основном - алгебраической и дифференциальной геометрии, топологии, а также позволила глубже понять структуру предшествующих ей теорий квантовой гравитации. Развитие теории струн продолжается, и есть надежда, что недостающие элементы струнных теорий и соответствующие феномены будут найдены в ближайшем будущем, в том числе в результате экспериментов на Большом адронном коллайдере.

Теория петлевой квантовой гравитации

Петлевая квантовая гравитация - одна из теорий квантовой гравитации.

В теории квантовой гравитации привычное нам гладкое и непрерывное пространство на сверхмалых масштабах оказывается структурой с очень сложной геометрией.

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года, С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель - гелонной. Данная модель приводит к интерпретации электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей.

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций.

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона.

Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо?льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены, фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований.

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью, отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Как сообщает Хоссенфельдер, расширения петлевой квантовой гравитации в высших измерениях включают в себя, подобно теории струн, суперсимметрию. Для того, чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, первая, как полагает Родольфо Гамбини из Уругвая, требует введения взаимодействий, похожих на таковые в теории струн.

Герман Верлинде из Принстонского университета полагает, что петлевая квантовая гравитация может помочь достичь прогресса в понимании идеи AdS/CFT-соответствия (anti-de Sitter / conformal field theory correspondence) между конформной теорией поля и гравитацией. В своей недавней работе, как сообщает Хоссенфельдер, физик при помощи методов петлевой квантовой гравитации описал трехмерное пространство-время (в котором две координаты пространственные и одна - временная).

В настоящее время над теорией струн работают несколько тысяч физиков-теоретиков. Над петлевой квантовой гравитацией - в сотни раз меньшее число специалистов. Большинство струнных теоретиков не воспринимают всерьез петлевую квантовую гравитацию. Теория струн основана на предположении существования на планковских масштабах гипотетических одномерных объектов - струн, возбуждения которых интерпретируются как элементарные частицы и их взаимодействия.

Эта теория является последовательным развитием квантовой теории поля, которая в настоящее время является математическим аппаратом для современной физики элементарных частиц - Стандартной модели. В отличие от теории струн, петлевая квантовая гравитация предполагает существование дискретной сетки пространства-времени, образованной квантовыми ячейками. Динамика этих ячеек определяет структуру пространства-времени.

Предлагаем вам посмотреть дебаты физиков, защищающих противоположную их специализации теорию:

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Просмотры: 227

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин , Абэй Аштекар , Тэд Джекобсон (англ. ) и Карло Ровелли . Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время .

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия . При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей .

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций .

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время . Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны , вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса , в них не обсуждается.

Л. Фрейдель (L. Freidel ), Дж. Ковальский-Гликман (J. Kowalski-Glikman ) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона .

Используя формализм модели спиновой пены , имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны , глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены , фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон , описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований .

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью , отмечая, что, хотя его модель и была вдохновлена преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория . Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн. .

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины , смешивание Кабиббо , а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves ).

См. также

Источники

Литература

Примечания

  1. Смолин Л. Атомы пространства и времени // В мире науки . - 2004. - № 4. - С. 18-25. - URL: http://www.chronos.msu.ru/RREPORTS/smolin_atomy/smolin_atomy.htm Архивная копия от 23 февраля 2009 на Wayback Machine
  2. , с. 219.
  3. С. Ю. Александров Лоренц-ковариантная петлевая квантовая гравитация // ТМФ. - 2004. - т. 139, № 3. - c. 363–380. - URL:

Экология познания: «Я просто думаю, что в струнной теории произошло слишком много хороших вещей, чтобы она была совершенно неправильной. Люди не очень хорошо ее понимают, но я просто не верю в гигантский космический замысел, который создал

«Я просто думаю, что в струнной теории произошло слишком много хороших вещей, чтобы она была совершенно неправильной. Люди не очень хорошо ее понимают, но я просто не верю в гигантский космический замысел, который создал эту невероятную вещь, и чтобы она не имела ничего общего с реальным миром», - сказал однажды Эдвард Уиттен.

Безо всяких сомнений, с математической точки зрения нет недостатка в невероятных, прекрасных и элегантных теориях. Но не все они подходят для нашей физической Вселенной. Кажется, что на каждую блестящую идею, которая точно описывает, что мы можем наблюдать и измерить, приходится по меньшей мере одна блестящая идея, которая пытается описать те же вещи, но остается в корне неверной. На прошлой неделе мы задались вопросом, который сводится к примерно следующей сути.

Квантовая гравитация. Мы хотели бы знать, имеется ли какой-нибудь прогресс в этой области за последние пять-десять лет. Нам, обычным смертным, кажется, что эта сфера малость подзастряла, а теория струн начала падать в забытие, поскольку ее сложно проверить и у нее имеется 10^500 возможных решений. Правда ли это, или же где-то за кулисами протекает некий прогресс, на который пресса просто не обращает внимания?

Во-первых, стоит провести большую разделительную черту между идеей квантовой гравитации, решением теории струн (или предлагаемым решением) и другими альтернативами.

Начнем со Вселенной, которую мы знаем и любим. С одной стороны, есть общая теория относительности, наша теория гравитации. Она утверждает, что вместо того, чтобы быть простым действием на расстоянии, как завещал Ньютон, когда все массы во всех местах оказывают силы друг на друга обратно пропорционально квадрату расстояния между ними, в ее основе лежит более тонкий механизм.

Масса, как установил Эйнштейн с принципом эквивалентности и E=mc^2 в 1907 году, была одной из форм энергии во Вселенной. Эта энергия, в свою очередь, искривляет саму ткань пространства-времени, изменяя путь движения всех объектов и изменяя то, что наблюдатель мог наблюдать в виде картезианской сетки. Объекты не ускоряются за счет невидимой силы, а скорее путешествуют по пути, определяемому влиянием всех различных форм энергии во Вселенной.

Это гравитация.

С другой стороны, у нас есть другие законы природы: квантовые. Есть электромагнетизм, за который отвечают электрически заряженные частицы, их движение и который описывается переносчиком силы фотоном, который выступает посредником при этих взаимодействиях и дарит нам явления, которые мы связываем с электростатикой и магнетизмом. Есть также две ядерных силы: слабая ядерная сила, ответственная за явления вроде радиоактивного распада, и сильная ядерная сила, которая удерживает атомные ядра вместе и позволяет существовать протонам и нейтронам.

Расчеты для этих сил обычно происходят в плоском пространстве-времени, с которого каждый студент начинает изучение квантовой теории поля. Но этого недостаточно, когда мы присутствуем в искривленном пространстве, как того диктует общая теория относительности.

«Итак, - скажете вы, - мы просто будем проводить вычисления нашей теории поля на фоне искривленного пространства!». Это известно как полуклассическая гравитация, и этот тип вычислений позволяет нам рассчитывать вещи вроде излучения Хокинга. Но даже это имеется только на горизонте самой черной дыры, а не там, где гравитация будет во всей своей красе. Есть много физических случаев, в которых нам пригодилась бы квантовая теория гравитации, и все они связаны с гравитационной физикой на мельчайших масштабах, на крошечных дистанциях.

Что, к примеру, происходит в центральных районах черных дыр? Вы можете подумать, мол, «о, там же сингулярность», но сингулярность - это не столько точка с бесконечной плотностью, сколько случай, где математический инструмент общей теории относительности выдает бессмысленные ответы на вопросы о потенциалах и силах. Что происходит, когда электрон проходит через двойную щель? Проходит ли гравитационное поле через обе щели? Или через одну? Общая теория относительности ничего не говорит на этот счет.

Считается, что должна быть квантовая теория гравитации, которая объяснит эти и другие проблемы, присущие в «гладкой» теории гравитации вроде ОТО. Для того чтобы объяснить, что происходит на малых дистанциях в присутствии гравитационных источников - или масс, - нам нужна квантовая, дискретная, а значит, и построенная на частицах теория гравитации.

Благодаря свойствам самой ОТО, что-то мы уже знаем.

Известные квантовые силы определяются действием частиц, известных как бозоны, или частицы с целым спином. Фотоны определяют электромагнитную силу, W- и Z-бозоны выступают посредниками для слабой ядерной силы, а глюоны - для сильного ядерной силы. У всех этих частиц спин равен 1, причем для массивных частиц спин может принимать значение -1, 0 или +1, тогда как у безмассовых частиц (вроде глюонов и фотонов) он может принимать значение только -1 или +1.

Бозон Хиггса тоже является бозоном, только не выступает посредником для сил и обладает спином 0. Насколько мы знаем гравитацию - ОТО является тензорной теорией гравитации - ее посредником должна выступать безмассовая частица со спином 2, а значит ее спин может принимать значение -2 или +2 только.

Получается, мы что-то знаем о квантовой теории гравитации еще до попытки сформулировать ее. Мы знаем это, поскольку какой бы ни была квантовая теория гравитации, она должна быть в соответствии с ОТО, когда мы имеем дело с не самыми малыми дистанциями до массивных частиц или объектов, равно как и ОТО должна сводиться к ньютоновской гравитации в режиме слабого поля.

Большой вопрос, конечно, как это сделать. Как квантовать гравитацию, чтобы она была корректна (в описании реальности), соотносилась с ОТО и КТП и приводила к вычисляемым предсказаниям новых явлений, которые могут быть наблюдаемы, измеряемы или проверямы.

Ведущий претендент, как вы знаете, это теория струн.

Теория струн - интереснейшее поле, которое включает все стандартные модели полей и частиц, фермионы и бозоны. Она включает 10-мерную тензор-скалярную теорию гравитации: с 9 пространственными и 1 временным измерением и параметром скалярного поля. Если мы уберем шесть из этих пространственных измерений (через не до конца понятный процесс, который люди называют компактификацией) и позволим параметру (ω), который определяет скалярное взаимодействие, уйти в бесконечность, мы сможем восстановить ОТО.

Однако у теории струн есть целый ряд феноменологических проблем. Одна из них заключается в том, что из теории вытекает огромное число новых частиц, в том числе и все суперсимметричные, которых мы до сих пор не обнаружили. Она утверждает, что нет необходимости в «свободных параметрах», которыми обладает Стандартная модель (для масс частиц), но заменяет эту проблему еще худшей. Когда мы говорим о 10^500 возможных решениях, эти решения касаются ожидаемых значений струнных полей, и нет никакого механизма восстановить их; чтобы струнная теория работала, вам придется отказаться от динамики и просто сказать, что «она должна была быть выбрана антропно».

Впрочем, струнная теория - не единственный игрок на этом поле.

Петлевая квантовая гравитация

ПКГ представляте собой интересный взгляд на проблему: вместо того чтобы пытаться квантовать частицы, ПКГ утверждает, что само пространство является дискретным. Как обычно представляют гравитацию: натянутая простыня с шаром для боулинга в центре. Мы также знаем, что обычно простынь квантуется, то есть состоит из молекул, которые состоят из атомов, которые состоят из ядер (кварков и глюонов) и электронов.

Пространство может быть таким же! Поскольку оно выступает в качестве ткани, то состоит из конечных квантованных элементов. И, возможно, соткано из «петель», откуда и берется ее название. Соедините эти петли вместе, и вы получите сеть, представляющую квантовое состояние гравитационного поля. Согласно этой картине, квантуется не только материя, но и само пространство. Эта научная область до сих пор активно разрабатывается.

Асимптотически безопасная гравитация

Асимптотическая свобода была разработана в 1970-х годах, чтобы объяснить необычный характер сильного взаимодействия: это была очень слабая сила на чрезвычайно коротких расстояниях, которая становилась сильнее по мере того, как заряженные частицы расходились дальше и дальше. В отличие от электромагнетизма, который имел небольшую константу взаимодействия, у сильного взаимодействия она была большая. Из-за некоторых интересных свойств квантовой хромодинамики, если вы связываетесь с нейтральной (цветной) системой, сила взаимодействия быстро падает. Это можно было объяснить физическими размерами барионов (протонов и нейтронов, например) и мезонов (пионов, к примеру).

Асимптотическая свобода, с другой стороны, решила фундаментальную проблему, связанную с этим: вам нужны не малые взаимодействия, связи (или связи, которые стремятся к нулю), а, скорее, связи, которые просто будут конечными при высокоэнергетическом пределе. Все константы связи меняются с энергией, и асимптотическая свобода ставит высокоэнергетическую неподвижную точку для константы (технически, для группы ренормировки, из которой извлекается константа связи), а все остальное можно рассчитывать для низких энергий.

Во всяком случае такова идея. Мы выяснили, как делать это для измерений 1 + 1 (одно пространственное и одно временное), но не для 3 + 1. Однако прогресс движется, во многом благодаря Кристофу Веттериху, который издал две грандиозных работы в 90-х годах. Не так давно Веттерих использовал асимптотическую свободу - всего шесть лет назад, - чтобы рассчитать предсказание массы бозона Хиггса еще перед тем, как БАК нашел его. Результат же?

Удивительно, но его предсказания идеально совпали с находками БАК. Это настолько прекрасное предсказание, что, если асимптотическая безопасность верна и массы топ-кварка, W-бозона и бозона Хиггса установлены окончательно, для стабильной работы вплоть до планковских величин физике не понадобятся другие фундаментальные частицы.

Хотя асимптотически безопасной гравитации не уделяют много внимания, она остается весьма привлекательной и многообещающей теорией, как и теория струн: успешно квантует гравитацию, сводит ОТО до предела низких энергией и остается УФ-конечной. Кроме того, она обходит теорию струн по одному параметру: в ней нет целой горы нового материала, который мы пока не можем доказать.

Причинная динамическая триангуляция

Эта идея довольно нова и была разработана в 2000 году Ренатой Лолл в коллаборации с другими учеными. Она сходится с петлевой квантовой гравитацией в том, что пространство дискретно, но в первую очередь озабочена тем, как это пространство развивается. Одно из интересных свойств этой идеи в том, что время тоже должно быть дискретно. В итоге мы получаем четырехмерное пространство-время в настоящем времени, но на очень высоких энергиях и малых расстояниях (в планковских масштабах) оно проявляется в виде двумерной структуры. В ее основе лежит математическая структура под названием симплекс, которая является n-мерным обобщением треугольника. 2-симплекс - это треугольник, 3-симплекс - тетраэдр, и так далее. Одна из «прекрасных» фишек этого проявляется в виде причинности - известного многим понятия - которая сохраняется в причинной динамической триангуляции. Возможно, она сможет объяснить гравитацию, но непонятно на 100%, сможет ли в эти рамки уместиться Стандартная модель элементарных частиц.

Возникающая (индуцированная) гравитация

Возможно, наиболее спорной из последних теорий квантовой гравитации является энтропийная гравитация, предложенная Эриком Верлинде в 2009 году, согласно модели которой гравитация является не фундаментальной силой, а скорее возникает как явление, связанное с энтропией. На самом деле корни возникающей гравитации уходят к открывателю условий образования асимметрии материи-антиматерии, Андрею Сахарову, который предложил эту идею еще в 1967 году. Работа по-прежнему находится в зачаточном состоянии, но за последние 5-10 лет на этом поле имеется некоторый прогресс.

Вот что у нас на сегодняшний день есть по квантовой гравитации. Мы уверены, что без нее не поймем работу Вселенной на фундаментальном уровне, но понятия не имеем, в каком направлении из представленных пяти (и других) движение будет верным. опубликовано

Пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время .

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия . При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей .

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций .

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время . Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны , вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса , в них не обсуждается.

Л. Фрейдель (L. Freidel ), Дж. Ковальский-Гликман (J. Kowalski-Glikman ) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона .

Используя формализм модели спиновой пены , имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны , глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены , фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон , описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований .

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью , отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория . Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн. .

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины , смешивание Кабиббо , а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves ).

См. также

Источники

  • , «Элементы большой науки»

Напишите отзыв о статье "Петлевая квантовая гравитация"

Литература

  • Lee Smolin, Three Roads to Quantum Gravity , Basic Books, 2001.
  • John Baez, The Quantum of Area? , Nature, vol.421, pp. 702–703; February 2003.
  • Lee Smolin, , arxiv.org/hep-th/0303185.
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27–50; November 2003.
  • Олег Фейгин. . - М .: Эксмо, 2012. - 288 с. - (Тайны мироздания). - 3000 экз. - ISBN 9785699530168 .

Примечания

Теории гравитации
Стандартные теории гравитации Альтернативные теории гравитации Квантовые теории гравитации Единые теории поля
Классическая физика
  • Общая теория относительности
    - Математическая формулировка общей теории относительности
    - Гамильтонова формулировка общей теории относительности

Принципы

  • Геометродинамика (англ. )
Классические

Релятивистские

  • Петлевая квантовая гравитация
  • Полуклассическая гравитация (англ. )
  • Причинная динамическая триангуляция (англ. )
  • Уравнение Уилера - Девитта (англ. )
  • Индуцированная гравитация (англ. )
  • Некоммутативная геометрия (англ. )
Многомерные
  • Общая теория относительности в многомерном пространстве

Струнные

  • Теория струн

Прочие

Отрывок, характеризующий Петлевая квантовая гравитация

В Лысых Горах, имении князя Николая Андреевича Болконского, ожидали с каждым днем приезда молодого князя Андрея с княгиней; но ожидание не нарушало стройного порядка, по которому шла жизнь в доме старого князя. Генерал аншеф князь Николай Андреевич, по прозванию в обществе le roi de Prusse, [король прусский,] с того времени, как при Павле был сослан в деревню, жил безвыездно в своих Лысых Горах с дочерью, княжною Марьей, и при ней компаньонкой, m lle Bourienne. [мадмуазель Бурьен.] И в новое царствование, хотя ему и был разрешен въезд в столицы, он также продолжал безвыездно жить в деревне, говоря, что ежели кому его нужно, то тот и от Москвы полтораста верст доедет до Лысых Гор, а что ему никого и ничего не нужно. Он говорил, что есть только два источника людских пороков: праздность и суеверие, и что есть только две добродетели: деятельность и ум. Он сам занимался воспитанием своей дочери и, чтобы развивать в ней обе главные добродетели, до двадцати лет давал ей уроки алгебры и геометрии и распределял всю ее жизнь в беспрерывных занятиях. Сам он постоянно был занят то писанием своих мемуаров, то выкладками из высшей математики, то точением табакерок на станке, то работой в саду и наблюдением над постройками, которые не прекращались в его имении. Так как главное условие для деятельности есть порядок, то и порядок в его образе жизни был доведен до последней степени точности. Его выходы к столу совершались при одних и тех же неизменных условиях, и не только в один и тот же час, но и минуту. С людьми, окружавшими его, от дочери до слуг, князь был резок и неизменно требователен, и потому, не быв жестоким, он возбуждал к себе страх и почтительность, каких не легко мог бы добиться самый жестокий человек. Несмотря на то, что он был в отставке и не имел теперь никакого значения в государственных делах, каждый начальник той губернии, где было имение князя, считал своим долгом являться к нему и точно так же, как архитектор, садовник или княжна Марья, дожидался назначенного часа выхода князя в высокой официантской. И каждый в этой официантской испытывал то же чувство почтительности и даже страха, в то время как отворялась громадно высокая дверь кабинета и показывалась в напудренном парике невысокая фигурка старика, с маленькими сухими ручками и серыми висячими бровями, иногда, как он насупливался, застилавшими блеск умных и точно молодых блестящих глаз.
В день приезда молодых, утром, по обыкновению, княжна Марья в урочный час входила для утреннего приветствия в официантскую и со страхом крестилась и читала внутренно молитву. Каждый день она входила и каждый день молилась о том, чтобы это ежедневное свидание сошло благополучно.
Сидевший в официантской пудреный старик слуга тихим движением встал и шопотом доложил: «Пожалуйте».
Из за двери слышались равномерные звуки станка. Княжна робко потянула за легко и плавно отворяющуюся дверь и остановилась у входа. Князь работал за станком и, оглянувшись, продолжал свое дело.
Огромный кабинет был наполнен вещами, очевидно, беспрестанно употребляемыми. Большой стол, на котором лежали книги и планы, высокие стеклянные шкафы библиотеки с ключами в дверцах, высокий стол для писания в стоячем положении, на котором лежала открытая тетрадь, токарный станок, с разложенными инструментами и с рассыпанными кругом стружками, – всё выказывало постоянную, разнообразную и порядочную деятельность. По движениям небольшой ноги, обутой в татарский, шитый серебром, сапожок, по твердому налеганию жилистой, сухощавой руки видна была в князе еще упорная и много выдерживающая сила свежей старости. Сделав несколько кругов, он снял ногу с педали станка, обтер стамеску, кинул ее в кожаный карман, приделанный к станку, и, подойдя к столу, подозвал дочь. Он никогда не благословлял своих детей и только, подставив ей щетинистую, еще небритую нынче щеку, сказал, строго и вместе с тем внимательно нежно оглядев ее:
– Здорова?… ну, так садись!
Он взял тетрадь геометрии, писанную его рукой, и подвинул ногой свое кресло.
– На завтра! – сказал он, быстро отыскивая страницу и от параграфа до другого отмечая жестким ногтем.
Княжна пригнулась к столу над тетрадью.
– Постой, письмо тебе, – вдруг сказал старик, доставая из приделанного над столом кармана конверт, надписанный женскою рукой, и кидая его на стол.
Лицо княжны покрылось красными пятнами при виде письма. Она торопливо взяла его и пригнулась к нему.
– От Элоизы? – спросил князь, холодною улыбкой выказывая еще крепкие и желтоватые зубы.
– Да, от Жюли, – сказала княжна, робко взглядывая и робко улыбаясь.
– Еще два письма пропущу, а третье прочту, – строго сказал князь, – боюсь, много вздору пишете. Третье прочту.
– Прочтите хоть это, mon pere, [батюшка,] – отвечала княжна, краснея еще более и подавая ему письмо.
– Третье, я сказал, третье, – коротко крикнул князь, отталкивая письмо, и, облокотившись на стол, пододвинул тетрадь с чертежами геометрии.
– Ну, сударыня, – начал старик, пригнувшись близко к дочери над тетрадью и положив одну руку на спинку кресла, на котором сидела княжна, так что княжна чувствовала себя со всех сторон окруженною тем табачным и старчески едким запахом отца, который она так давно знала. – Ну, сударыня, треугольники эти подобны; изволишь видеть, угол abc…
Княжна испуганно взглядывала на близко от нее блестящие глаза отца; красные пятна переливались по ее лицу, и видно было, что она ничего не понимает и так боится, что страх помешает ей понять все дальнейшие толкования отца, как бы ясны они ни были. Виноват ли был учитель или виновата была ученица, но каждый день повторялось одно и то же: у княжны мутилось в глазах, она ничего не видела, не слышала, только чувствовала близко подле себя сухое лицо строгого отца, чувствовала его дыхание и запах и только думала о том, как бы ей уйти поскорее из кабинета и у себя на просторе понять задачу.
Старик выходил из себя: с грохотом отодвигал и придвигал кресло, на котором сам сидел, делал усилия над собой, чтобы не разгорячиться, и почти всякий раз горячился, бранился, а иногда швырял тетрадью.
Княжна ошиблась ответом.
– Ну, как же не дура! – крикнул князь, оттолкнув тетрадь и быстро отвернувшись, но тотчас же встал, прошелся, дотронулся руками до волос княжны и снова сел.
Он придвинулся и продолжал толкование.
– Нельзя, княжна, нельзя, – сказал он, когда княжна, взяв и закрыв тетрадь с заданными уроками, уже готовилась уходить, – математика великое дело, моя сударыня. А чтобы ты была похожа на наших глупых барынь, я не хочу. Стерпится слюбится. – Он потрепал ее рукой по щеке. – Дурь из головы выскочит.
Она хотела выйти, он остановил ее жестом и достал с высокого стола новую неразрезанную книгу.
– Вот еще какой то Ключ таинства тебе твоя Элоиза посылает. Религиозная. А я ни в чью веру не вмешиваюсь… Просмотрел. Возьми. Ну, ступай, ступай!
Он потрепал ее по плечу и сам запер за нею дверь.
Княжна Марья возвратилась в свою комнату с грустным, испуганным выражением, которое редко покидало ее и делало ее некрасивое, болезненное лицо еще более некрасивым, села за свой письменный стол, уставленный миниатюрными портретами и заваленный тетрадями и книгами. Княжна была столь же беспорядочная, как отец ее порядочен. Она положила тетрадь геометрии и нетерпеливо распечатала письмо. Письмо было от ближайшего с детства друга княжны; друг этот была та самая Жюли Карагина, которая была на именинах у Ростовых:
Жюли писала:
«Chere et excellente amie, quelle chose terrible et effrayante que l"absence! J"ai beau me dire que la moitie de mon existence et de mon bonheur est en vous, que malgre la distance qui nous separe, nos coeurs sont unis par des liens indissolubles; le mien se revolte contre la destinee, et je ne puis, malgre les plaisirs et les distractions qui m"entourent, vaincre une certaine tristesse cachee que je ressens au fond du coeur depuis notre separation. Pourquoi ne sommes nous pas reunies, comme cet ete dans votre grand cabinet sur le canape bleu, le canape a confidences? Pourquoi ne puis je, comme il y a trois mois, puiser de nouvelles forces morales dans votre regard si doux, si calme et si penetrant, regard que j"aimais tant et que je crois voir devant moi, quand je vous ecris».
[Милый и бесценный друг, какая страшная и ужасная вещь разлука! Сколько ни твержу себе, что половина моего существования и моего счастия в вас, что, несмотря на расстояние, которое нас разлучает, сердца наши соединены неразрывными узами, мое сердце возмущается против судьбы, и, несмотря на удовольствия и рассеяния, которые меня окружают, я не могу подавить некоторую скрытую грусть, которую испытываю в глубине сердца со времени нашей разлуки. Отчего мы не вместе, как в прошлое лето, в вашем большом кабинете, на голубом диване, на диване «признаний»? Отчего я не могу, как три месяца тому назад, почерпать новые нравственные силы в вашем взгляде, кротком, спокойном и проницательном, который я так любила и который я вижу перед собой в ту минуту, как пишу вам?]
Прочтя до этого места, княжна Марья вздохнула и оглянулась в трюмо, которое стояло направо от нее. Зеркало отразило некрасивое слабое тело и худое лицо. Глаза, всегда грустные, теперь особенно безнадежно смотрели на себя в зеркало. «Она мне льстит», подумала княжна, отвернулась и продолжала читать. Жюли, однако, не льстила своему другу: действительно, и глаза княжны, большие, глубокие и лучистые (как будто лучи теплого света иногда снопами выходили из них), были так хороши, что очень часто, несмотря на некрасивость всего лица, глаза эти делались привлекательнее красоты. Но княжна никогда не видала хорошего выражения своих глаз, того выражения, которое они принимали в те минуты, когда она не думала о себе. Как и у всех людей, лицо ее принимало натянуто неестественное, дурное выражение, как скоро она смотрелась в зеркало. Она продолжала читать: 211

Определение 1

Петлевая квантовая теория представляет собой знание о петлевой гравитации квантов. Основателями ее были такие ученые, как Т. Джекобсон, К. Ровелли, А. Аштекар и Л. Смолин.

Сущность петлевой квантовой теории

Согласно данной теории, время и пространство состоят из дискретных квантовых ячеек, соединенных определенным образом между собой. Это позволяет им создавать дискретную структуру на незначительных масштабах времени, а на больших временное пространство становится уже непрерывным.

Таким образом, пространство складывается из очень маленьких ячеек, плавно соединенных друг с другом, формируя для нас окружающее пространство. В моменты образования этими связками узлов и сплетений формируются элементарные частицы.

Благодаря петлевой квантовой гравитации, ученым удалось выяснить факт исчезновения начальной сингулярности под воздействием квантовых эффектов. Таким образом, Большой взрыв перестает быть завесой тайны, за которую нельзя заглянуть. Наука позволяет теперь посмотреть на события, происходившие во Вселенной до него.

Главными объектами в петлевой квантовой теории выступают особые ячейки пространства, чьим состоянием и поведением управляет определенное поле, существующее в них. Его величина становится для таких ячеек так называемым «внутренним временем». Иными словами, переход от слабого поля к более сильному предполагает существование «прошлого», способного воздействовать на определенное «будущее».

Следовательно, теория приравнивает пространство атомам: получаемые при определении объема числа формируют дискретный набор, что позволяет объему изменяться отдельными порциями. Это, в свою очередь, лишает пространство непрерывности и допускает идею его существования в формате неких квантовых единиц объема и площади.

Специфика петлевой квантовой теории

В случае описания квантово-механических явлений ученые-физики вычисляют показатели вероятности различных процессов, которые происходят при определенных обстоятельствах. То же самое происходит при задействовании теории петлевой квантовой гравитации в целях описания изменений геометрии пространства либо перемещения полей и частиц в спиновой сети.

Замечание 1

Точные выражения с целью определения показателя квантовой вероятности шагов спиновой сети удалось вывести ученому Томасу Тиманну. Конечным результатом таких вычислений стало возникновение четкой методики по вычислению вероятности какого-либо процесса, чье происхождение вероятно в этом мире в рамках подчинения законам вышеуказанной теории.

Теория относительности предполагает неотделимость времени и пространства друг от друга и существование их в формате единого временного пространства. Введение концепции временного пространства в петлевую квантовую теорию, спиновые сети, которые представляют пространство, становятся так называемой «спиновой пеной».

При включении еще одного показателя измерения - времени – происходит расширение линий спиновой сети и превращение их в двумерные поверхности, при этом наблюдается рассасывание узлов в линии. Переходы, провоцирующие изменение спиновой сети, теперь представлены в форме специальных узлов, внутри которых происходит объединение линий пены. Мгновенный снимок происходящего процесса визуально схож с изображением поперечного среза временного пространства.

Аналогичный срез спиновой пены является спиновой сетью, но не стоит при этом заблуждаться относительно перемещений плоскости среза в непрерывном режиме, аналогично плавному потоку времени. Подобно процессу определения пространства в виде дискретной геометрии спиновой сети, время будет задаваться как последовательность отдельных шагов, перестраиваемых сетью.

Таким образом, можно сделать определенные выводы:

  1. О дискретности времени, то есть, оно не течет, подобно реке, а более напоминает тикающие часы, интервал между тиками которых приблизительно равен времени Планка. Иными словами, время во Вселенной отмеряется мириадами часов: в той области, где в спиновой пене осуществляется квантовый шаг, часы производят один «тик».
  2. Петлевая квантовая гравитация способствует характерным предсказаниям новых событий и явлений. Фактически, она считается полностью совместимой с постулатом и трехмерности мира и одном временном измерении.
  3. Являясь совместимой с широким диапазоном различных версий относительно содержащейся в мире материи, она не требует наличия симметрий, размерностей или степени свободы, за исключением исследуемых учеными.

В то же время имеются версии петлевой квантовой гравитации, включающие суперсимметрию распространение многих результатов на более высокие размерности. По этой причине, при возникновении указаний на присутствие суперсимметрии либо на высшие размерности, для петлевой квантовой теории проблем не возникает. Вместо этого, предположения петлевой гравитации квантов будут относиться к структуре пространства на очень незначительных расстояниях.

Таким образом, петлевая квантовая гравитация предполагает присутствие в действительности гладкой картины временного пространства классической ОТО только в виде результата усреднения дискретной структуры, внутри которой области и поверхности могут обладать исключительно определенными дискретными квантованными значения объемов и площадей.

Замечание 2

Петлевая квантовая гравитация позволяет получить специфические предположения для дискретной геометрии квантов (речь идет о коротких дистанциях). Более того, такие предположения начинают формироваться на базе первых принципов, а следовательно, они исключают в себе элементы подгонки.

В этом смысле подходы в петлевой квантовой гравитации имеют определенные отличия в сравнении с другими подходами, постулирующими некую форму дискретной структуры в формате стартовой позиции и без выведения ее в виде следствия объединения ОТО с квантовой теорией.

Различия между теорией струн и теорией петлевой квантовой гравитации

Ученые отмечают принципиальные отличия петлевой квантовой теории от других теорий. В частности, - теории суперструн. В последней главными объектами выступают многомерные мембраны и струны, перемещающиеся в изначально подготовленном для них времени и пространстве. При этом факторы возникновения этого многомерного пространства данная теория называть не позволяет.

Вышеуказанные теории в своей основе используют одномерные протяженные объекты, соответствующие по своей дуальности потоку линий калибровочного квантованного поля. Их отличия наблюдаются по трем соотношениям:

  1. Струны рассматриваются со свойством перемещения в классическом формате, что характеризуется зафиксированным выбором метрики и прочих классических полей. Существование петель при этом допускается к рассмотрению на более фундаментальном уровне, где отсутствуют другие поля и классическая метрика.
  2. Калибровочное поле в случае с петлями рассматривается в формате калибрующей области всех лоренцевых преобразований или только некоторой их части. При открытых струнах такое поле же будет соответствовать полю Янга-Миллса.
  3. Петлевая квантовая гравитация допускает квантование без соответствующих предположений. В действительности, поскольку глобальная лоренцева инвариантность не представляет собой симметрию классической ОТО, то она не может допускаться к рассмотрению и в случаях любого точного квантования данной теории.