Какое расстояние до самой далекой галактики? Самые дальние звёзды, видимые с Земли Дальняя галактика от земли

Астрономы из Техасского университета A&M и Техасского университета в Остине обнаружили самую далёкую из известных нам галактик. Согласно данным спектрографии, она находится на расстоянии примерно 30 млрд световых лет от Солнечной системы (или от нашей Галактики, что в данном случае не столь существенно, потому что диаметр Млечного пути - всего лишь 100 тыс. световых лет).

Самый дальний объект во Вселенной получил романтичное название z8_GND_5296.

«Восхитительно знать, что мы - первые люди в мире, кто увидел его, - сказал доктор наук Вител Тилви (Vithal Tilvi), соавтор научной работы, которая сейчас опубликована в онлайне (для бесплатного просмотра научных работ используйте сайт sci-hub.org).

Обнаруженная галактика z8_GND_5296 сформировалась через 700 млн лет после Большого взрыва. Собственно, в таком состоянии мы и видим её сейчас, потому что свет от новорожденной галактики только сейчас дошёл до нас, пройдя расстояние в 13,1 млрд световых лет. Но поскольку в процессе этого Вселенная расширялась, то на данную минуту, как показывают расчёты, расстояние между нашими галактиками составляет 30 млрд световых лет.

В новорожденных галактиках интересно то, что там идёт активный процесс формирования новых звёзд. Если в нашем Млечном пути появляется по одной новой звезде в год, то в z8_GND_5296 - примерно по 300 в год. То, что происходило 13,1 млрд лет назад, мы можем спокойно сейчас наблюдать в телескопы.

Возраст далёких галактик можно определить по космологическому красному смещению, вызванному в том числе эффектом Доплера. Чем быстрее удаляется объект от наблюдателя, тем сильнее проявляется эффект Доплера. Галактика z8_GND_5296 показала красное смещение 7,51. Около сотни галактик обладают красным смещением больше 7, то есть они сформировались до того, как Вселенной исполнилось 770 млн лет, и предыдущим рекордом было 7,215. Но лишь у нескольких галактик расстояние подтверждено по данным спектрографии, то есть по спектральной линии Лайман альфа (о ней ниже).

Радиус Вселенной составляет как минимум 39 млрд световых лет. Казалось бы, это противоречит возрасту Вселенной в 13,8 млрд лет, но противоречия нет, если учесть расширение самой ткани пространства-времени: для этого физического процесса не существует ограничения по скорости.

Учёным не совсем понятно, почему не удаётся наблюдать другие галактики возрастом до 1 млрд лет. Удалённые галактики наблюдают по чёткому проявлению спектральной линии L α (Лайман альфа), которая соответствует переходу электрона со второго энергетического уровня на первый. Почему-то у галактик младше 1 млрд лет линия Лайман альфа проявляется всё слабее. Одна из теорий состоит в том, что как раз в то время происходил переход Вселенной из непрозрачного состояния с нейтральным водородом в полупрозрачное состояние с ионизированным водородом. Мы просто не можем увидеть галактики, которые скрыты в «тумане» из нейтрального водорода.

Как же z8_GND_5296 смогла пробиться через туман нейтрального водорода? Учёные предполагают, что она ионизировала ближайшие окрестности, так что протоны смогли прорваться. Таким образом, z8_GND_5296 - самая первая из известных нам галактик, которая вышла из непрозрачного месива нейтрального водорода, наполнявшего Вселенную в первые сотни миллионов лет после Большого взрыва.

Изучение самых далёких галактик может показать нам объекты, расположенные в миллиардах световых лет от нас, но даже с идеальной технологией пространственный промежуток между самой далёкой галактикой и Большим взрывом будет оставаться огромным.

Вглядываясь во Вселенную, мы видим свет везде, на всех расстояниях, на которые только способны заглянуть наши телескопы. Но в какой-то момент мы наткнёмся на ограничения. Одно из них накладывается космической структурой, формирующейся во Вселенной: мы можем видеть только звёзды, галактики и прочее, только если они излучают свет. Без этого наши телескопы ничего не способны разглядеть. Другое ограничение, при использовании видов астрономии, не ограничивающихся светом - это ограничение того, какая часть Вселенной доступна для нас с момента Большого взрыва. Две эти величины могут не быть связанными друг с другом, и именно по этой теме нам задаёт вопрос наш читатель:

Почему красное смещение реликтового излучения находится в пределах 1000, хотя самое большое красное смещение любой галактики из тех, что мы видели, равно 11?
Сначала мы должны разобраться с тем, что происходит в нашей Вселенной с момента Большого взрыва.



Наблюдаемая Вселенная может простираться на 46 млрд световых лет во всех направлениях с нашей точки зрения, но наверняка есть и другие её участки, ненаблюдаемые нами, и, возможно, они даже бесконечны.

Весь набор того, что мы знаем, видим, наблюдаем и с чем взаимодействуем, называют «наблюдаемой Вселенной». За пределами него, скорее всего, находится ещё больше участков Вселенной, и со временем у нас будет возможность видеть всё больше и больше этих участков, когда свет от удалённых объектов, наконец, достигнет нас после космического путешествия в миллиарды лет. Мы можем видеть то, что видим (и больше, а не меньше), благодаря комбинации из трёх факторов:


  • Со времени Большого взрыва прошло конечное количество времени, 13,8 млрд лет.

  • Скорость света, максимальная скорость для любого сигнала или частицы, передвигающегося по Вселенной, конечна и постоянна.

  • Сама ткань пространства растягивается и расширяется с момента Большого взрыва.


Временная шкала истории наблюдаемой Вселенной

То, что нам видно сегодня, является результатом работы трёх этих факторов, совместно с изначальным распределением материи и энергии, работающих по законам физики на протяжении всей истории Вселенной. Если мы хотим узнать, какой была Вселенная в любой ранний момент времени, нам надо всего лишь пронаблюдать, какой она стала сегодня, измерить все связанные с этим параметры, и подсчитать, какой она была в прошлом. Для этого нам потребуется много наблюдений и измерений, но уравнения Эйнштейна, пусть и такие трудные, по крайней мере, недвусмысленны. Выводимые результаты выливаются в два уравнения, известные, как уравнения Фридмана , и с задачей их решения каждый студент, изучающий космологию, сталкивается напрямую. Но мы, честно говоря, сумели провести несколько удивительных измерений параметров Вселенной.


Глядя в направлении северного полюса Галактики Млечный Путь, мы можем заглядывать в глубины космоса. На этом изображении размечены сотни тысяч галактик, и каждый его пиксель - это отдельная галактика.

Мы знаем, с какой скоростью она расширяется сегодня. Мы знаем, какова плотность материи в любом направлении, в котором мы смотрим. Мы знаем, сколько структур формируется на всех масштабах, от шаровых скоплений до карликовых галактик, от крупных галактик до их групп, скоплений и крупномасштабных нитевидных структур. Мы знаем, сколько во Вселенной нормальной материи, тёмной материи, тёмной энергии, а также более мелких составляющих, таких, как нейтрино, излучение, и даже чёрные дыры. И только исходя из этой информации, экстраполируя назад во времени, мы можем вычислить как размер Вселенной, так и скорость её расширения в любой момент её космической истории.


Логарифмический график зависимости размера наблюдаемой Вселенной от возраста

Сегодня наша обозримая Вселенная простирается на примерно 46,1 млрд световых лет во всех направлениях с нашей точки зрения. На таком расстоянии находится точка старта воображаемой частицы, которая отправилась в путь в момент Большого взрыва, и, путешествуя со скоростью света, прибыла бы к нам сегодня, спустя 13,8 млрд лет. В принципе, на этом расстоянии были порождены все гравитационные волны, оставшиеся от космической инфляции - состояния, предшествовавшего Большому взрыву, настроившего Вселенную и обеспечившего все начальные условия.


Гравитационные волны, созданные космической инфляцией - это самый старый сигнал из всех, которые человечество в принципе могло бы засечь. Они родились в конце космической инфляции и в самом начале горячего Большого взрыва.

Но во Вселенной остались и другие сигналы. Когда ей было 380 000 лет, остаточное излучение от Большого взрыва прекратило рассеиваться со свободных заряженных частиц, поскольку те образовали нейтральные атомы. И эти фотоны, после образования атомов, продолжают испытывать красное смещение вместе с расширением Вселенной, и их можно увидеть сегодня при помощи микроволновой или радиоантенны/телескопа. Но из-за большой скорости расширения Вселенной на ранних этапах, «поверхность», которая «светится» для нас этим остаточным светом - космический микроволновой фон - находится всего в 45,2 млрд световых лет от нас. Расстояние от начала Вселенной до того места, где Вселенная находилась через 380 000 лет, получается равным 900 млн световых лет!


Холодные флуктуации (синие) в реликтовом излучении не холоднее сами по себе, а просто представляют участки с усиленным гравитационным притяжением из-за увеличенной плотности материи. Горячие (красные) участки горячее, потому что излучение в этих регионах живёт в менее глубоком гравитационном колодце. Со временем более плотные регионы с большей вероятностью вырастут в звёзды, галактики и скопления, а менее плотные сделают это с меньшей вероятностью.

Пройдёт ещё немало времени, прежде чем мы найдём самую удалённую из всех открытых нами галактик Вселенной. Хотя симуляции и расчёты показывают, что самые первые звёзды могли сформироваться через 50-100 млн лет с начала Вселенной, а первые галактики - через 200 млн лет, так далеко назад мы ещё не заглядывали (хотя, есть надежда, что после запуска в следующем году космического телескопа им. Джеймса Уэбба мы сможем это сделать!). На сегодня космическим рекордом владеет галактика, показанная ниже, существовавшая, когда Вселенной было 400 млн лет - это всего 3% от текущего возраста. Однако эта галактика, GN-z11, расположена всего в 32 млрд световых лет от нас: это порядка 14 млрд световых лет от «края» наблюдаемой Вселенной.


Самая удалённая из всех обнаруженных галактик: GN-z11, фото с наблюдения GOODS-N, проведённого телескопом Хаббл.

Причина этого состоит в том, что вначале скорость расширения со временем очень быстро падала. Ко времени, когда галактика Gz-11 существовала в наблюдаемом нами виде, Вселенная расширялась в 20 раз быстрее, чем сегодня. Когда было испущено реликтовое излучение, Вселенная расширялась в 20 000 раз быстрее, чем сегодня. На момент Большого взрыва, насколько мы знаем, Вселенная расширялась в 10 36 раз быстрее, или в 1 000 000 000 000 000 000 000 000 000 000 000 000 раз быстрее, чем сегодня. Со временем скорость расширения Вселенной сильно уменьшилась.

И для нас это очень хорошо! Баланс между первичной скоростью расширения и общим количеством энергии во Вселенной во всех её формах идеально соблюдается, вплоть до погрешности наших наблюдений. Если бы во Вселенной было хоть немного больше материи или излучения на ранних этапах, она бы схлопнулась обратно миллиарды лет назад, и нас бы не было. Если бы во Вселенной было слишком мало материи или излучения на ранних этапах, она бы расширилась так быстро, что частицы не смогли бы встретиться друг с другом, чтобы даже сформировать атомы, не говоря уже о более сложных структурах типа галактик, звёзд, планет и людей. Космическая история, которую рассказывает нам Вселенная, это история чрезвычайной сбалансированности, благодаря которой мы и существуем.


Замысловатый баланс между скоростью расширения и общей плотностью Вселенной настолько хрупок, что даже отклонение в 0,00000000001% в любую сторону сделало бы Вселенную совершенно необитаемой для любой жизни, звёзд или даже планет в любой момент времени.

Если верны лучшие из наших современных теорий, то первые настоящие галактики должны были сформироваться в возрасте от 120 до 210 млн лет. Это соответствует расстоянию от нас до них в 35-37 млрд световых лет, и расстоянию от самой дальней галактики до края наблюдаемой Вселенной в 9-11 млрд световых лет на сегодня. Это чрезвычайно далеко, и говорит об одном удивительном факте: Вселенная чрезвычайно быстро расширялась на ранних этапах, а сегодня расширяется гораздо медленнее. 1% возраста Вселенной отвечает за 20% её общего расширения!


История Вселенной полна фантастических событий, но с тех пор, как закончилась инфляция и произошёл Большой взрыв, скорость расширения стремительно падала, и замедляется, пока плотность продолжает уменьшаться.

Расширение Вселенной растягивает длину волны света (и отвечает за видимое нами красное смещение), и за большое расстояние между микроволновым фоном и самой далёкой галактикой отвечает большая скорость этого расширения. Но размер Вселенной сегодня свидетельствует ещё кое о чём удивительном: об невероятных эффектах, происходивших с течением времени. Со временем Вселенная продолжит расширяться всё больше и больше, и к тому времени, когда её возраст будет в десять раз превышать сегодняшний, расстояния увеличатся так сильно, что нам уже не будут видны никакие галактики за исключением членов нашей местной группы, даже с телескопом, эквивалентным Хабблу. Наслаждайтесь всем тем, что видно сегодня, великим разнообразием того, что присутствует на всех космических масштабах. Оно не будет существовать вечно!

Мощнейшая гравитационная линза, усилившая свет в две тысячи раз, помогла орбитальной обсерватории "Хаббл" получить фотографии звезды, удаленной от Земли на 9 миллиардов световых лет, говорится в статье, опубликованной в журнале Nature.

"Нам впервые удалось увидеть обычную звезду - не сверхновую, не гамма-вспышку, а самое заурядное светило, удаленное от нас на девять миллионов световых лет. Как нам кажется, другие подобные наложения "космических линз" помогут нам увидеть самые ранние звезды Вселенной. Само мироздание подарило нам самый большой телескоп, какой только может существовать", - заявил Алексей Филиппенко из университета Калифорнии в Беркли (США).

Любое скопление материи большой массы, в том числе и темной, взаимодействует со светом и заставляет его лучи искривляться, как это делают обычные оптические линзы. Такой эффект ученые называют гравитационным линзированием. В некоторых случаях искривление пространства помогает астрономам увидеть сверхдалекие объекты - первые галактики Вселенной и их ядра-квазары - которые были бы недоступны для наблюдения с Земли без гравитационного "увеличения".

Если два квазара, галактики или других объекта расположены друг за другом для наблюдателей на Земле, возникает интересная вещь - свет более далекого объекта расщепится при прохождении через гравитационную линзу первого. Из-за этого мы увидим не два, а пять ярких точек, четыре из которых будут световыми "копиями" более далекого объекта. Вдобавок, подобные "линзы Эйнштейна" часто накладываются друг на друга, что усиливает свет еще более далеких объектов.

Филиппенко и его коллеги, в том числе нобелевский лауреат Адам Рисс (Adam Riess), впервые смогли получить детальные снимки звезды, существовавшей в одной из первых галактик Вселенной, наблюдая за скоплением галактик MACS J1149, расположенном в созвездии Льва на расстоянии в пять миллиардов световых лет от Земли.

Это скопление, как выяснили ученые в 2014 году, закрывает собой еще одно крупное "семейство" галактик, следы которого можно увидеть в виде яркого кольца света, окружающего MACS J1149. Анализируя его структуру по снимкам, полученным "Хабблом" в 2016 и 2017 годах, Филиппенко и его коллеги заметили необычный объект, который выбивался из общего ряда галактик.

Проанализировав его спектр и измерив размеры, ученые обнаружили, что имеют дело не со вспышкой сверхновой или гамма-всплеском, а с нормальной звездой, которая относится к числу голубых сверхгигантов. Она находится на окраинах галактики, удаленной от Земли примерно на 9 миллиардов световых лет, на противоположном краю которой относительно недавно взорвалась сверхновая, SN Refsdal, чей свет также был многократно усилен "линзой" MACS J1149.

В прошлом, эта звезда, получившая кличку "Икар" и имя MACS J1149 LS1, оставалась невидимой для "Хаббла" или любых других телескопов. Она стала заметной только после того, как ее положение в галактике сместилось, и ее свет начал проходить через окрестности другой звезды, небольшого карлика размером с Солнце, на пути к скоплению MACS J1149. Это усилило ее свечение в 600 раз и позволило астрономам открыть ее.

В ближайшем будущем, как ожидают Филиппенко и его коллеги, MACS J1149 LS1 станет еще ярче из-за дальнейших сдвигов в положении звезд в ее родной галактике. Наблюдения за этим светилом, как надеются ученые, помогут им понять, какую роль играет темная материя в формировании подобных гравитационных линз и приблизиться к открытию так называемых примордиальных черных дыр.

В мае 2015 года телескопом «Хаббл» была зафиксирована вспышка самой далекой, а значит и самой старой известной на сегодняшний день галактики. Излучению потребовалось целых 13,1 млрд. световых лет, чтобы достигнуть Земли и быть зафиксированным нашей аппаратурой. По подсчетам ученых, галактика появилась на свет примерно через 690 млн. лет после Большого Взрыва.

Можно было бы подумать, что если свет от галактики EGS-zs8-1 (а именно такое элегантное имя присвоили ей ученые) летел к нам 13,1 млрд. лет, то и расстояние до неё будет равно тому, которое свет пройдет за эти 13,1 млрд. лет.


Галактика EGS-zs8-1 — самая далекая среди всех обнаруженных на сегодняшний день

Но нельзя забывать некоторые особенности устройства нашего мира, которые сильно повлияют на вычисление расстояния. Дело в том, что вселенная расширяется, причем делает это с ускорением. Получается, пока свет шел 13,1 млрд. лет до нашей планеты, пространство расширялось все больше и больше, и галактика удалялась от нас всё быстрее и быстрее. Наглядный процесс представлен на рисунке ниже.

Учитывая расширение пространства, самая далекая галактика EGS-zs8-1 в данный момент находится от нас приблизительно в 30,1 млрд. световых лет, что является рекордом среди всех других подобных объектов. Интересно, что до определенного момента мы будем обнаружить всё более далекие галактики, свет которых до сих пор не дошёл до нашей планеты. Можно с уверенностью сказать, что рекорд галактики EGS-zs8-1 в будущем будет побит.

Это интересно: часто возникает неправильное представление о размере вселенной. Её ширину сравнивают с её же возрастом, который составляет 13,79 млрд. лет. При этом не учитывается, что вселенная расширяется с ускорением. По приблизительным подсчетам, диаметр видимой вселенной составляет 93 млрд. световых лет. Но существует и невидимая часть вселенной, посмотреть которую нам не удастся никогда. Подробнее о размере вселенной и невидимых галактиках в статье ««.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

На безграничных просторах интернета я как-то наткнулся на следующую картинку.

Конечно, этот маленький кружок посреди Млечного пути захватывает дух и заставляет задумать о многих вещах, начиная от бренности бытия и заканчивая безграничными размерами вселенной, но все же возникает вопрос: насколько все это соответствует действительности?

К сожалению, составители изображения не указали радиус желтого круга, а оценивать его на глазок - сомнительное занятие. Тем не менее авторы твиттера @FakeAstropix задались таким же вопросом как и я, и утверждают, что эта картинка верна где-то для 99% звезд, видимых на ночном небе.

Другой вопрос заключается в том, а сколько вообще звезд можно увидеть на небе не пользуясь оптикой? Считается, что невооруженным глазом с поверхности Земли можно наблюдать до 6000 звезд. Но в реальности это число будет куда меньше - во первых, в северном полушарии мы физически сможем видеть не больше половины от этого количества (это же справедливо и для жителей южного полушария), во-вторых речь идет об идеальных условиях наблюдения, которых в реальности практически невозможно достичь. Чего только стоит одно световое загрязнение неба. А когда речь идет о самых дальних видимых звездах, то в большинстве случаев чтобы заметить их, нам нужны именно идеальные условия.

Но все же, какие из маленьких мерцающих точек на небе являются наиболее далекими от нас? Вот список, который мне пока что удалось составить (хотя конечно совсем не удивлюсь, если я много чего пропустил, так что не судите строго).

Денеб - самая яркая звезда в созвездии Лебедя и двадцатая по яркости звезда в ночном небе, с видимой звездной величиной +1,25 (считается, что предел видимости для человеческого глаза +6, максимум +6.5 для людей с действительно великолепным зрением). Этот бело-голубой сверхигагинт, который находится от нас на расстоянии от 1500 (последняя оценка) до 2600 световых лет - таким образом, видимый нами свет Денеба был испущен где-то в промежутке между зарождением Римской республики и падением Западной Римской империи.

Масса Денеба больше массы нашей звезды примерно в 200 раз Солнца, а светимость превышает солнечную минимум в 50 000 раз. Находись он на месте Сириуса, он бы сверкал на нашем небе ярче, чем полная Луна.

VV Цефея А - одна из самых больших звезд нашей галактики. По разным оценкам, ее радиус превышает солнечный от 1000 до 1900 раз. Она находится на расстоянии 5000 световых лет от Солнца. VV Цефея А является частью двойной системы - его сосед активно перетягивает на себя вещество звезды- компаньона. Видимая звездная величина VV Цефея А примерно равна +5.

P Лебедя находится от нас на расстоянии от 5000 до 6000 световых лет. Она является ярко-голубым переменным гипергигантом, чья светимость превышает солнечную в 600 000 раз. Известна тем, что за период ее наблюдений ее видимая звездная величина несколько раз менялась. Впервые звезда была открыта в 17 веке, когда она внезапно стала видимой - тогда ее звездная величина составляла +3. Через 7 лет яркость звезды уменьшилась настолько, что она перестала быть видимой без телескопа. В 17 веке последовало еще несколько циклов резкого увеличения, а затем такого же резкого уменьшения светимости, за что ее даже прозвали постоянной новой. Но в 18 веке звезда успокоилась и с тех пор ее звездная величина составляет примерно +4.8.


P Лебедя выделана красным

Мю Цефея известная также как Гранатовая звезда Гершеля - красных сверхгигант, возможно самая крупная звезда, видимая невооруженным глазом. Ее светимость превышает солнечную от 60 000 да 100 000 раз, радиус согласно последним оценкам может быть в 1500 раз больше солнечного. Мю Цефея находится на расстоянии 5500-6000 световых лет от нас. Звезда находится в конце своего жизненного пути и в скором (по астрономическим меркам) времени превратится в сверхновую. Ее видимая звездная величина меняется от +3,4 до +5. Считается, что она является одной из самых красных звезд на северном небе.


Звезда Пласкетта находится на расстоянии 6600 световых лет от Земли в созвездии Единорога и представляет собой одну из самых массивных систем двойных звезд в Млечном пути. Звезда А имеет массу в 50 солнечных и светимость, превышающую светимость нашей звезды в 220 000 раз. Звезда B имеет примерно такую же массу, но ее светимость поменьше - “всего лишь” в 120 000 солнечных. Видимая звездная величина звезды А составляет +6.05 - а значит, теоретически ее можно увидеть невооруженным глазом.

Система Эта Киля находится от нас на расстоянии 7500 - 8000 световых лет. Она состоит из двух звёзд, главная из которых — яркая голубая переменная, является одной из самых больших и неустойчивых звезд в нашей галактике с массой около 150 солнечных, 30 из которых звезда уже успела сбросить. В 17 веке Эта Киля имела четвёртую звёздную величину, к 1730 году она стала одной из самых ярких в созвездии Киля, но к 1782 опять стала очень слабой. Затем, в 1820 году началось резкое увеличение яркости звезды и в апреле 1843 она достигла видимой звёздной величины −0,8, став на время второй по яркости на небе после Сириуса. После этого, яркость Эта Киля стремительно упала, и к 1870 году звезда стала невидимой невооружённым глазом.

Однако, в 2007 году яркость звезды снова выросла, она достигла звездной величины +5 и снова стала видимой. Нынешняя светимость звезды оценивается минимум в миллион солнечных и она по всей видимости является главным кандидатом на звание следующей сверхновой в Млечном пути. Некоторые даже считают, что она уже взорвалась.

Ро Кассиопеи - это одна из самых дальних звезд, видимых невооруженным глазом. Это крайне редкий желтый гипергигант, со светимостью превышающей солнчечную в полмиллиона раз и радиусом в 400 раз больше, чем у нашей звезды. По последним оценкам, она находится на расстоянии 8200 световых лет от Солнца. Обычно ее звездная величина составляет +4.5, но в среднем раз в 50 лет на несколько месяцев звезда тускнеет, а температура ее внешних слоев уменьшается с 7000 до 4000 градусов Кельвина. Последний такой случай произошел в конце 2000 - начале 2001 году. Согласно расчетам, за эти несколько месяцев звезда выбросила вещество, масса которого составила 3% от массы Солнца.

V762 Кассиопеи - это вероятно самая дальняя звезда, видимая с Земли невооруженным глаза - по крайней мере, исходя из имеющихся на данный момент данных. Информации об этой звезде немного. Известно, что это красный сверхгигант. Согласно последним данным он находится на расстоянии 16 800 световых лет от нас. Его видимая звездная величина составляет от +5.8 до +6, так что увидеть звезду можно как раз в идеальных условиях.

В заключение стоит упомянуть, что в истории были случаи, когда люди имели возможность наблюдать куда более далекие звезды. Например, в 1987 в Большом Магеллановом облаке, находящемся от нас на расстоянии 160 000 световых лет, вспыхнула сверхновая, которую можно было видеть невооруженным глазом. Другое дело, что в отличии от всех перечисленных выше сверхгигантов, наблюдать ее можно было в течении куда меньшего промежутка времени.