Признаки параллельности двух прямых свойства параллельных прямых. Признак параллельности прямых. Полные уроки — Гипермаркет знаний

Видеоурок «Признаки параллельности двух прямых» содержит доказательство теорем, которые описывают признаки, означающие параллельность прямых. При этом в видео описывается 1) теорема о параллельности прямых, при которых секущей созданы равные углы, 2) признак, означающий параллельность двух прямых - по равным образованным соответственным углам, 3) признак, означающий параллельность двух прямых в случае, когда при их пересечении секущей односторонние углы в сумме составляют 180°. Задача данного видеоурока - ознакомить учеников с признаками, означающими параллельность двух прямых, знание которых необходимо для решения многих практических задач, наглядно представить доказательство данных теорем, формировать навыки в доказательстве геометрических утверждений.

Преимущества видеоурока связаны с тем, что при помощи анимации, голосового сопровождения, возможности выделения цветом, он обеспечивает высокую степень наглядности, может послужить заменой подачи стандартного блока нового учебного материала учителем.

Начинается видеоурок с выведения на экран названия. Перед описанием признаков параллельности прямых ученики знакомятся с понятием секущей. Дается определение секущей как прямой, которая пересекает другие прямые. На экране изображены две прямые a и b, которые пересекаются прямой с. Построенная прямая с выделена синим цветом, акцентируя внимание на том, что они является секущей данных прямых а и b. Для того чтобы рассматривать признаки параллельности прямых необходимо более детально ознакомиться с областью пересечения прямых. Секущая в точках пересечения с прямыми образует 8 углов ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7, ∠8, анализируя соотношения которых можно вывести признаки параллельности данных прямых. Отмечается, что углы ∠3 и ∠5, а также ∠2 и ∠4 называются накрест лежащими. Дается подробное объяснение при помощи анимации расположения накрест лежащих углов как углов, которые лежат между параллельными прямыми, и примыкают к прямым, располагаясь накрест. Затем дается понятие односторонних углов, в число которых входят пары ∠4 и ∠5, а также ∠3 и ∠6. Также указываются пары соответственных углов, которых на построенном изображении 4 пары - ∠1-∠5, ∠4-∠8, ∠2-∠6, ∠3-∠7.

В следующей части видеоурока рассматриваются три признака параллельности любых двух прямых. На экран выводится первое описание. Теорема утверждает, что при равенстве накрест лежащих углов, образуемых секущей, данные прямые будут параллельны. Утверждение сопровождается рисунком, на котором изображены две прямые а и b и секущая АВ. Отмечается, что образуемые накрест лежащие углы ∠1 и ∠2 равны между собой. Данное утверждение требует доказательства.

Наиболее просто доказываемый частный случай - когда данные образуемые накрест лежащие углы являются прямыми. Это означает, что секущая является перпендикуляром к прямым, а по уже доказанной теореме в этом случае прямые а и b не будут пересекаться, то есть являются параллельными. Доказательство для данного частного случая описывается на примере изображения, построенного рядом с первым рисунком, выделяя важные детали доказательства при помощи анимации.

Для доказательства в общем случае необходимо проведение дополнительного перпендикуляра из середины отрезка АВ на прямую а. Далее на прямой b откладывается отрезок ВН 1 , равный отрезку АН. Из полученной при этом точки Н 1 проводится отрезок, соединяющий точки О и Н 1 . Далее рассматриваются два треугольника ΔОНА и ΔОВН 1 , равенство которых доказывается по первому признаку равенства двух треугольников. Стороны ОА и ОВ равны по построению, так как точка О отмечалась как середина отрезка АВ. Стороны НА и Н 1 В также равны по построению, так как мы откладывали отрезок Н 1 В, равный НА. А углы ∠1=∠2 по условию задачи. Так как образованные треугольники равны между собой, то и соответствующие оставшиеся пары углов и сторон также равны между собой. Из этого следует, что и отрезок ОН 1 является продолжением отрезка ОН, составляя один отрезок НН 1 . При этом отмечается, что так как построенный отрезок ОН - перпендикуляр к прямой а, то соответственно и отрезок НН 1 является перпендикулярным к прямым а и b. Данный факт означает, используя теорему о параллельности прямых, к которым построен один перпендикуляр, что данные прямые а и b являются параллельными.

Следующая теорема, требующая доказательства - признак равенства параллельных прямых по равенству соответственных углов, образованных при пересечении секущей. Утверждение указанной теоремы выведено на экран и может быть предложено под запись учениками. Доказательство начинается с построения на экране двух параллельных прямых а и b, к которым построена секущая с. Выделенная на рисунке синим цветом. Секущей образованы соответственные углы ∠1 и ∠2, которые по условию равны между собой. Также отмечаются смежные углы ∠3 и ∠4. ∠2 по отношению к углу ∠3 является вертикальным углом. А вертикальные углы всегда равны. К тому же углы ∠1 и ∠3 являются накрест лежащими между собой - их равенство (по уже доказанному утверждению) означает, что прямые а и b параллельны. Теорема доказана.

Последняя часть видеоурока посвящена доказательству утверждения о том, что если сумма односторонних углов, которые образованы при пересечении двух некоторых прямых секущей прямой, будет равняться 180°, в этом случае данные прямые будут параллельны между собой. Доказательство демонстрируется, используя рисунок, на котором изображены прямые а и b, пересекающиеся с секущей с. Образованные пересечением углы отмечены аналогично предыдущему доказательству. По условию, сумма углов ∠1 и ∠4 равна 180°. При этом известно, что сумма углов ∠3 и ∠4 равна 180°, так как они являются смежными. Это означает, что углы ∠1 и ∠3 равны между собой. Данный вывод дает право утверждать, что прямые а и b параллельны. Теорема доказана.

Видеоурок «Признаки параллельности двух прямых» может быть использован учителем в качестве самостоятельного блока, демонстрирующего доказательства названных теорем, заменяющего объяснение учителя или сопровождающего его. А подробное объяснение дает возможность использовать материал для самостоятельного изучения учениками и поможет в объяснении материала при дистанционном обучении.

Эта глава посвящена изучению параллельных прямых. Так называются две прямые на плоскости, которые не пересекаются. Отрезки параллельных прямых мы видим в окружающей обстановке - это два края прямоугольного стола, два края обложки книги, две штанги троллейбуса и т. д. Параллельные прямые играют в геометрии очень важную роль. В этой главе вы узнаете о том, что такое аксиомы геометрии и в чём состоит аксиома параллельных прямых - одна из самых известных аксиом геометрии.

В п. 1 мы отмечали, что две прямые либо имеют одну общую точку, т. е. пересекаются, либо не имеют ни одной общей точки, т. е. не пересекаются.

Определение

Параллельность прямых а и b обозначают так: а || b.

На рисунке 98 изображены прямые а и b, перпендикулярные к прямой с. В п. 12 мы установили, что такие прямые а и b не пересекаются, т. е. они параллельны.

Рис. 98

Наряду с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка называются параллельными , если они лежат на параллельных прямых. На рисунке 99, а отрезки АВ и CD параллельны (АВ || CD), а отрезки MN и CD не параллельны. Аналогично определяется параллельность отрезка и прямой (рис. 99, б), луча и прямой, отрезка и луча, двух лучей (рис. 99, в).


Рис. 99 Признаки параллельности двух прямых

Прямая с называется секущей по отношению к прямым а и b, если она пересекает их в двух точках (рис. 100). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 100 обозначены цифрами. Некоторые пары этих углов имеют специальные названия:

    накрест лежащие углы : 3 и 5, 4 и 6;
    односторонние углы : 4 и 5, 3 и 6;
    соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7.


Рис. 100

Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны: ∠1 = ∠2 (рис. 101, а).

Докажем, что а || b. Если углы 1 и 2 прямые (рис. 101, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны.


Рис. 101

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины О отрезка АВ проведём перпендикуляр ОН к прямой а (рис. 101, в). На прямой b от точки В отложим отрезок ВН 1 , равный отрезку АН, как показано на рисунке 101, в, и проведём отрезок ОН 1 . Треугольники ОНА и ОН 1 В равны по двум сторонам и углу между ними (АО = ВО, АН = ВН 1 , ∠1 = ∠2), поэтому ∠3 = ∠4 и ∠5 = ∠6. Из равенства ∠3 = ∠4 следует, что точка Н 1 лежит на продолжении луча ОН, т. е. точки Н, О и Н 1 лежат на одной прямой, а из равенства ∠5 = ∠6 следует, что угол 6 - прямой (так как угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой HH 1 поэтому они параллельны. Теорема доказана.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей с соответственные углы равны, например ∠1 =∠2 (рис. 102).


Рис. 102

Так как углы 2 и 3 - вертикальные, то ∠2 = ∠3. Из этих двух равенств следует, что ∠1 = ∠3. Но углы 1 и 3 - накрест лежащие, поэтому прямые а и b параллельны. Теорема доказана.

Теорема

Доказательство

    Пусть при пересечении прямых а и b секущей с сумма односторонних углов равна 180°, например ∠1 + ∠4 = 180° (см. рис. 102).

    Так как углы 3 и 4 - смежные, то ∠3 + ∠4 = 180°. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые а и b параллельны. Теорема доказана.

Практические способы построения параллельных прямых

Признаки параллельности прямых лежат в основе способов построения параллельных прямых с помощью различных инструментов, используемых на практике. Рассмотрим, например, способ построения параллельных прямых с помощью чертёжного угольника и линейки. Чтобы построить прямую, проходящую через точку М и параллельную данной прямой а, приложим чертёжный угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая угольник вдоль линейки, добьёмся того, чтобы точка М оказалась на стороне угольника, и проведём прямую b. Прямые а и b параллельны, так как соответственные углы, обозначенные на рисунке 103 буквами α и β, равны.


Рис. 103 На рисунке 104 показан способ построения параллельных прямых при помощи рейсшины. Этим способом пользуются в чертёжной практике.


Рис. 104 Аналогичный способ применяется при выполнении столярных работ, где для разметки параллельных прямых используется малка (две деревянные планки, скреплённые шарниром, рис. 105).


Рис. 105

Задачи

186. На рисунке 106 прямые а и b пересечены прямой с. Докажите, что а || b, если:

    а) ∠1 = 37°, ∠7 = 143°;
    б) ∠1 = ∠6;
    в) ∠l = 45°, а угол 7 в три раза больше угла 3.


Рис. 106

187. По данным рисунка 107 докажите, что АВ || DE.


Рис. 107

188. Отрезки АВ и CD пересекаются в их общей середине. Докажите, что прямые АС и BD параллельны.

189. Используя данные рисунка 108, докажите, что ВС || AD.


Рис. 108

190. На рисунке 109 АВ = ВС, AD = DE, ∠C = 70°, ∠EAC = 35°. Докажите, что DE || АС.


Рис. 109

191. Отрезок ВК - биссектриса треугольника АВС. Через точку К проведена прямая, пересекающая сторону ВС в точке М так, что ВМ = МК. Докажите, что прямые КМ и АВ параллельны.

192. В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°. Докажите, что биссектриса угла ВСЕ параллельна прямой АВ.

193. В треугольнике ABC ∠A = 40°, ∠B = 70°. Через вершину В проведена прямая BD так, что луч ВС - биссектриса угла ABD. Докажите, что прямые АС и BD параллельны.

194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертёжного угольника и линейки проведите прямую, параллельную противоположной стороне.

195. Начертите треугольник АВС и отметьте точку D на стороне АС. Через точку D с помощью чертёжного угольника и линейки проведите прямые, параллельные двум другим сторонам треугольника.

1. Первый признак параллельности.

Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

Пусть прямые АВ и СD пересечены прямой ЕF и ∠1 = ∠2. Возьмём точку О - середину отрезка КL секущей ЕF (рис.).

Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ ⊥ МN. Докажем, что и СD ⊥ МN.

Для этого рассмотрим два треугольника: МОЕ и NОК. Эти треугольники равны между собой. В самом деле: ∠1 = ∠2 по условию теоремы; ОK = ОL - по построению;

∠МОL = ∠NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, ΔМОL = ΔNОК, а отсюда и ∠LМО = ∠КNО,
но ∠LМО прямой, значит, и ∠КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны, что и требовалось доказать.

Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.

2. Второй признак параллельности.

Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.

Пусть какие-нибудь соответственные углы равны, например ∠ 3 = ∠2 (рис.);

∠3 = ∠1, как углы вертикальные; значит, ∠2 будет равен ∠1. Но углы 2 и 1 - внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.

Приложим треугольник к линейке так, как это показано на рис. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.

3. Третий признак параллельности.

Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (рис.).

Пусть ∠1 и ∠2-внутренние односторонние углы и в сумме составляют 2d .

Но ∠3 + ∠2 = 2d , как углы смежные. Следовательно, ∠1 + ∠2 = ∠3+ ∠2.

Отсюда ∠1 = ∠3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2 d (или 180°), то эти две прямые параллельны.


Признаки параллельных прямых:

1. Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

2.Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

3. Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180°, то эти две прямые параллельны.

4. Если две прямые параллельны третьей прямой, то они параллельны между собой.

5. Если две прямые перпендикулярны третьей прямой, то они параллельны между собой.

Аксиома параллельности Евклида

Задача. Через точку М, взятую вне прямой АВ, провести прямую, параллельную прямой АВ.

Пользуясь доказанными теоремами о признаках параллельности прямых, можно эту задачу решить различными способами,

Решение. 1-й с п о с о б (черт. 199).

Проводим МN⊥АВ и через точку М проводим СD⊥МN;

получаем СD⊥МN и АВ⊥МN.

На основании теоремы ("Если две прямые перпендикулярны к одной и той же прямой, то они параллельны.") заключаем, что СD || АВ.

2-й с п о с о б (черт. 200).

Проводим МК, пересекающую АВ под любым углом α, и через точку М проводим прямую ЕF, образующую с прямой МК угол ЕМК, равный углу α. На основании теоремы () заключаем, что ЕF || АВ.

Решив данную задачу, можем считать доказанным, что через любую точку М, взятую вне прямой АВ, можно провести прямую, ей параллельную. Возникает вопрос, сколько же прямых, параллельных данной прямой и проходящих через данную точку, может существовать?

Практика построений позволяет предполагать, что существует только одна такая прямая, так как при тщательно выполненном чертеже прямые, проведённые различными способами через одну и ту же точку параллельно одной и той же прямой, сливаются.

В теории ответ на поставленный вопрос даёт так называемая аксиома параллельности Евклида; она формулируется так:

Через точку, взятую вне дaнной прямой, можно провести только одну прямую, параллельную этой прямой.

На чертеже 201 через точку О проведена прямая СК, параллельная прямой АВ.

Всякая другая прямая, проходящая через точку О, уже не будет параллельна прямой АВ, а будет её пересекать.

Принятая Евклидом в его "Началах" аксиома, которая утверждает, что на плоскости через точку, взятую вне данной прямой, можно провести только одну прямую, параллельную этой прямой, называется аксиомой параллельности Евклида .

Более двух тысячелетий после Евклида многие учёные-математики пытались доказать это математическое предложение, но всегда их попытки оказывались безуспешными. Только в 1826 г. великий русский учёный, профессор Казанского университета Николай Иванович Лобачевский доказал, что, используя все другие аксиомы Евклида, это математическое предложение доказать нельзя, что оно действительно должно быть принято за аксиому. Н. И. Лобачевский создал новую геометрию, которая в отличие от геометрии Евклида названа геометрией Лобачевского.

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Если a ||c и b ||c , то a ||b .

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Если a c и b c , то a ||b .

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Если ∠1 + ∠2 = 180°, то a ||b .

4. Если соответственные углы равны, то прямые параллельны:

Если ∠2 = ∠4, то a ||b .

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Если ∠1 = ∠3, то a ||b .

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Если a ||b , то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Если a ||b , то ∠2 = ∠4.

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Если a ||b , то ∠1 = ∠3.

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Если a ||b и c a , то c b .

Пятое свойство - это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.

Цели занятия: На этом занятии вы познакомитесь с понятием «параллельные прямые», узнаете, как можно убедиться в параллельности прямых, а также, какими свойствами обладают углы, образованные параллельными прямыми и секущей.

Параллельные прямые

Вы знаете, что понятие «прямая» относится к числу так называемых неопределяемых понятий геометрии.

Вы уже знаете, что две прямые могут совпадать, то есть иметь все общие точки, могут пересекаться, то есть иметь одну общую точку. Пересекаются прямые под разными углами, при этом углом между прямыми считают наименьших из углов, которые ими образованы. Частным случаем пересечения можно считать случай перпендикулярности, когда угол, образованный прямыми, равен 90 0 .

Но две прямые могут и не иметь общих точек, то есть не пересекаться. Такие прямые называются параллельными .

Поработайте с электронным образовательным ресурсом « ».

Чтобы познакомиться с понятием «параллельные прямые», поработайте в материалами видеоурока

Таким образом, теперь вы знаете определение параллельных прямых.

Из материалов фрагмента видеоурока вы узнали о различных видах углов, которые образуются при пересечении двух прямых третьей.

Пары углов 1 и 4; 3 и 2 называют внутренними односторонними углами (они лежат между прямыми a и b ).

Пары углов 5 и 8; 7 и 6 называют внешними односторонними углами (они лежат вне прямых a и b ).

Пары углов 1 и 8; 3 и 6; 5 и 4; 7 и 2 называют односторонними углами при прямых a и b и секущей c . Как вы видите, из пары соответственных углов один лежит между прямым a и b , а другой вне их.

Признаки параллельности прямых

Очевидно, что пользуясь определением сделать вывод о параллельности двух прямых невозможно. Поэтому для того чтобы сделать заключение о том, что две прямые параллельны, пользуются признаками .

Один из них вы уже можете сформулировать, познакомившись с материалами первой части видеоурока:

Теорема 1 . Две прямые, перпендикулярные третьей, не пересекаются, то есть параллельны.

С другими признаками параллельности прямых на основе равенства определенных пар углов вы познакомитесь, поработав с материалами второй части видеоурока «Признаки параллельности прямых».

Таким образом, вы должны знать еще три признака параллельности прямых.

Теорема 2 (первый признак параллельности прямых) . Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Рис. 2. Иллюстрация к первому признаку параллельности прямых

Еще раз повторите первый признак параллельности прямых, поработав с электронным образовательным ресурсом « ».

Таким образом, при доказательстве первого признака параллельности прямых используется признак равенства треугольников (по двум сторонам и углу между ними), а также признак параллельности прямых как перпендикулярных одной прямой.

Задание 1.

Запишите формулировку первого признака параллельности прямых и ее доказательство в свои тетради.

Теорема 3 (второй признак параллельности прямых) . Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Еще раз повторите второй признак параллельности прямых, поработав с электронным образовательным ресурсом « ».

При доказательстве второго признака параллельности прямых используется свойство вертикальных углов и первый признак параллельности прямых.

Задание 2.

Запишите формулировку второго признака параллельности прямых и ее доказательство в свои тетради.

Теорема 4 (третий признак параллельности прямых) . Если при пересечении двух прямых секущей сумма односторонних углов равна 180 0 , то прямые параллельны.

Еще раз повторите третий признак параллельности прямых, поработав с электронным образовательным ресурсом « ».

Таким образом, при доказательстве первого признака параллельности прямых используется свойство смежных углов и первый признак параллельности прямых.

Задание 3.

Запишите формулировку третьего признака параллельности прямых и ее доказательство в свои тетради.

Для того чтобы потренироваться в решении простейших задач, поработайте с материалами электронного образовательного ресурса « ».

Признаки параллельности прямых используются при решении задач.

Теперь рассмотрите примеры решения задач на признаки параллельности прямых, поработав с материалами видеоурока «Решение задач по теме «Признаки параллельности прямых».

А теперь проверьте себя, выполнив задания контрольного электронного образовательного ресурса « ».

Тот, кто хочет поработать с решением более сложных задач, может поработать с материалами видеоурока «Задачи на признаки параллельности прямых».

Свойства параллельных прямых

Параллельные прямые обладают набором свойств.

Вы узнаете, какие это свойства, поработав с материалами видеоурока «Свойства параллельных прямых».

Таким, образом, важным фактом, который вы должны знать, является аксиома параллельности.

Аксиома параллельности . Через точку, не лежащую на данной прямой, можно провести прямую , параллельную данной, и притом только одну.

Как вы узнали из материалов видеоурока, опираясь на эту аксиому, можно сформулировать два следствия.

Следствие 1. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую параллельную прямую .

Следствие 2. Если две прямые параллельны третьей, то они параллельны между собой.

Задание 4.

Запишите формулировку сформулированных следствий и их доказательства в свои тетради.

Свойства углов, образованных параллельными прямыми и секущей являются теоремами, обратными соответствующим признакам.

Так, из материалов видеоурока вы узнали свойство накрест лежащих углов.

Теорема 5 (теорема , обратная первому признаку параллельности прямых) . При пересечении двух параллельных прямых секущей накрест лежащие углы равны.

Задание 5.

Еще раз повторите первое свойство параллельных прямых, поработав с электронным образовательным ресурсом « ».

Теорема 6 (теорема , обратная второму признаку параллельности прямых) . При пересечении двух параллельных прямых соответственные углы равны.

Задание 6.

Запишите формулировку данной теоремы и ее доказательство в свои тетради.

Еще раз повторите второе свойство параллельных прямых, поработав с электронным образовательным ресурсом « ».

Теорема 7 (теорема , обратная третьему признаку параллельности прямых) . При пересечении двух параллельных прямых сумма односторонних углов равна 180 0 .

Задание 7.

Запишите формулировку данной теоремы и ее доказательство в свои тетради.

Еще раз повторите третье свойство параллельных прямых, поработав с электронным образовательным ресурсом « ».

Все свойства параллельных прямых также используются при решении задач.

Рассмотрите типичные примеры решения задач, поработав с материалами видеоурока «Параллельные прямые и задачи на углы между ними и секущей».