Атомная энергия. Сферы и направления использования ядерной энергии Как получают атомную энергию

Зависимость энергии связи, приходящейся на один нуклон, от числа нуклонов в ядре приведена на графике.

Энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон , неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента. Удельная энергия связи нуклона в ядре колеблется, в среднем, в пределах от 1 МэВ у лёгких ядер (дейтерий) до 8,6 МэВ, у ядер среднего веса (А≈100). У тяжёлых ядер (А≈200) удельная энергия связи нуклона меньше, чем у ядер среднего веса, приблизительно на 1 МэВ, так что их превращение в ядра среднего веса (деление на 2 части) сопровождается выделением энергии в количестве около 1 МэВ на нуклон, или около 200 МэВ на ядро. Превращение лёгких ядер в более тяжёлые ядра даёт ещё больший энергетический выигрыш в расчёте на нуклон. Так, например, реакция соединения дейтерия и трития

1 D²+ 1 T³→ 2 He 4 + 0 n 1

сопровождается выделением энергии 17,6 МэВ, то есть 3,5 МэВ на нуклон .

Высвобождение ядерной энергии

Известны экзотермические ядерные реакции, высвобождающие ядерную энергию.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония . Ядра делятся при попадании в них нейтрона , при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией . В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Другим способом высвобождения ядерной энергии является термоядерный синтез . При этом два ядра лёгких элементов соединяются в одно тяжёлое. Такие процессы происходят на Солнце.

Многие атомные ядра являются неустойчивыми. С течением времени часть таких ядер самопроизвольно превращаются в другие ядра, высвобождая энергию. Такое явление называют радиоактивным распадом .

Применение ядерной энергии

Энергия термоядерного синтеза применяется в водородной бомбе .

Примечания

См. также

Ссылки

Международные соглашения

  • Конвенция об оперативном оповещении о ядерной аварии (Вена, 1986)
  • Конвенция о физической защите ядерного материала (Вена, 1979)
  • Венская конвенция о гражданской ответственности за ядерный ущерб
  • Объединённая конвенция о безопасности обращения с отработавшим топливом и безопасности обращения с радиоактивными отходами

Литература

  • Clarfield, Gerald H. and William M. Wiecek (1984). Nuclear America: Military and Civilian Nuclear Power in the United States 1940-1980 , Harper & Row.
  • Cooke, Stephanie (2009). In Mortal Hands: A Cautionary History of the Nuclear Age , Black Inc.
  • Cravens Gwyneth Power to Save the World: the Truth about Nuclear Energy. - New York: Knopf, 2007. - ISBN 0-307-26656-7
  • Elliott, David (2007). Nuclear or Not? Does Nuclear Power Have a Place in a Sustainable Energy Future? , Palgrave.
  • Falk, Jim (1982). Global Fission: The Battle Over Nuclear Power , Oxford University Press.
  • Ferguson, Charles D., (2007). Nuclear Energy: Balancing Benefits and Risks Council on Foreign Relations .
  • Herbst, Alan M. and George W. Hopley (2007). Nuclear Energy Now: Why the Time has come for the World’s Most Misunderstood Energy Source , Wiley.
  • Schneider, Mycle, Steve Thomas, Antony Froggatt, Doug Koplow (August 2009). The World Nuclear Industry Status Report , German Federal Ministry of Environment, Nature Conservation and Reactor Safety.
  • Walker, J. Samuel (1992). Containing the Atom: Nuclear Regulation in a Changing Environment, 1993-1971
  • Walker, J. Samuel (2004). Three Mile Island: A Nuclear Crisis in Historical Perspective , Berkeley: University of California Press.
  • Weart, Spencer R. The Rise of Nuclear Fear . Cambridge, MA: Harvard University Press, 2012. ISBN 0-674-05233-1

Wikimedia Foundation . 2010 .

  • Коссман, Бернхард
  • Циммерман, Альберт Карл Генрих

Смотреть что такое "Ядерная энергия" в других словарях:

    ЯДЕРНАЯ ЭНЕРГИЯ - (атомная энергия) внутренняя энергия атомных ядер, выделяющаяся при ядерных превращениях (ядерных реакциях). энергия связи ядра. дефект массыНуклоны (протоны и нейтроны) в ядре прочно удерживаются ядерными силами. Чтобы удалить нуклон из ядра,… … Большой Энциклопедический словарь

    ЯДЕРНАЯ ЭНЕРГИЯ - (атомная энергия), внутр. энергия ат. ядра, выделяющаяся при ядерных превращениях. Энергия, к рую необходимо затратить для расщепления ядра на составляющие его нуклоны, наз. энергией связи ядра?св. Это макс. энергия, к рая может выделиться.… … Физическая энциклопедия

    ЯДЕРНАЯ ЭНЕРГИЯ - ЯДЕРНАЯ ЭНЕРГИЯ, ЭНЕРГИЯ, выделяемая в процессе ядерной реакции как результат перехода МАССЫ в энергию так, как описано в уравнении: Е=mс2 (где Е энергия, m масса, с скорость света); оно было выведено А. ЭЙНШТЕЙНОМ в его ТЕОРИИ ОТНОСИТЕЛЬНОСТИ.… … Научно-технический энциклопедический словарь

    ЯДЕРНАЯ ЭНЕРГИЯ - (атомная энергия) см. () () … Большая политехническая энциклопедия

    ЯДЕРНАЯ ЭНЕРГИЯ - (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при некоторых ядерных реакциях. Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза легких ядер (смотри… … Современная энциклопедия

Когда стало ясно, что углеводородные источники сырья, такие как нефть, газ, уголь – исчерпываются. Это означает, что мы должны искать новые виды энергии. Сейчас очень серьёзно встал вопрос о возможности катастрофических изменений климата, связанных с тем, что обычные тепловые станции создают парниковый слой газа. И в результате, на Земле происходит глобальное потепление. Это абсолютно определённо. Надо искать новые виды энергии, которые не приводят к этому.

Кувшинов Вячеслав Иванович:
Строение атома и структура атома (то что он имеет внутри ядро) стало известно только в прошлом веке. Когда шла Вторая мировая война шла, стало ясно, что из ядра атома можно извлечь колоссальную энергию. Естественно, продумывался вариант, как это можно использовать с точки зрения оружия, с точки зрения атомной бомбы.
И только в 50-х годах, встал вопрос о мирном использовании атомной энергии, возникло понятие «мирный атом».

Первая Атомная электростанция в Советском Союзе была построена в Обнинске. Любопытно, что директором первой Атомной электростанции был академик Андрей Капитонович Красин, который, кстати, потом стал директором Института энергетических и ядерных исследований «Сосны».

Кувшинов Вячеслав Иванович:
Возьмёмпротоны и нейтроны, из которых состоит ядро. Если они сидят внутри ядра – они тесно связаны ядерными силами. Почему тесно? Потому что, например, два протона – имеют одинаковый электрический заряд, они должны колоссально отталкиваться, однако, они стянуты. Таким образом, внутри ядра есть ядерные силы. И, оказывается, что часть массы протонов и нейтронов переходит в энергию. И существует такая знаменитая формула, которую сейчас даже на майках пишут E = Mc2 . E - энергия, M - это масса частиц, С в квадрате – это скорость света.
Оказывается, есть ещё специальная энергия, которая связана с массой тела. И если в ядре есть какая-то запасённая энергия, если ядро раскололи, то эта энергия в виде энергии осколков выделяется. И именно её количество (Е) равно (М) на (квадрат скорости света). Вот в результате деления одного ядра у вас появляется некая энергия в виде энергии осколков.
Тут интересно то, что когда происходит деление большого количества, например, уранового топлива, то происходит цепная ядерная реакция. Это означает, что ядра делятся практически одновременно. При этом выделяется колоссальное количество энергии. Например, 1,5 кг уранового топлива может заменить 1,5 вагона угля.

Какую роль играет скорость света в этой универсальной формуле?

Кувшинов Вячеслав Иванович:
Эйнштейн построил свои формулы изменения скорости света из одной системы координат в другую, из которой следует, что скорость света – постоянная, а все другие скорости других тел и предметов – меняются. Любопытно, что из формулы относительности Эйнштейна выходит, что путешествие во времени – возможно!Из неё следует так называемый «парадокс близнецов». Он заключается в том, что один из близнецов, находящийся в ракете, разогнанной до скорости, близкой к скорости света, состарится меньше своего брата, остающегося на Земле.

Кувшинов Вячеслав Иванович, профессор, генеральный директор «Объединённого института энергетических и ядерных исследований «Сосны»:
По данным МАГАТЭ, только включение атомной энергии дает наиболее низкую стоимость электроэнергии. Белорусы увидят это преимущество в своих «жировках».

По исследованиям МГАТЭ к 2020 в топливно- энергетическом балансе Беларуси возникнет, как говорят, дыра. Специалисты утверждают, что закрыть пробел в потреблении энергии возможно будет только с помощью действующей атомной электростанции.

По данным МАГАТЭ в мире действует 441 энергоблок. Вокруг Беларуси 5 атомных электростанций. В соседской Украине действует Ровенская АЭС, в России – Смоленская, Ленинградская и в процессе строительства Балтийская АЭС.

Николай Груша, директор Департамента ядерной энергетки Министерства энергетики РБ:
Основная задача строительства АЭС, и вообще, основная задача энергетической политики в РБ – это снижение зависимости от поставок природного газа.
В вводом в эксплуатацию АЭС мощностью более 2 млн киловатт, во-первых, будет вырабатываться порядка 27-29 % всей производимой электроэнергии на АЭС. Это позволит заместить примерно 5 млрд кубических метров природного газа. То есть почти четверть того, что мы сегодня потребляем.

Вклад ядерной техники и технологий в обеспечение безопасности государства принято разделять на сферы гражданского (мирного) и военного применения. Такое разделение в известном смысле условно, поскольку конверсия ядерных технологий имела место на всех этапах их развития.

Основные направления мирного использования ядерной энергии:

  • электроэнергетика;
  • теплоснабжение населенных пунктов (коммунальное) и промышленных объектов (промышленное), опреснение морской воды;
  • энергетические установки транспортного назначения, используемые в качестве энергоисточников на судах морского флота - ледоколах, лихтеровозах и др.;
  • освоение месторождений арктического континентального шельфа;
  • энергетические установки для энергоснабжения искусственных космических систем и объектов; ракетные двигатели;
  • исследовательские реакторные установки различного назначения;
  • получение изотопной продукции, необходимой для использования в медицине, технике, сельском хозяйстве;
  • промышленное применение подземных ядерных взрывов.
  • Основные направления военного использования ядерной энергии:
  • наработка оружейных ядерных материалов;
  • ядерное оружие;
  • энергетические установки, используемые для накачки энергией лазерного оружия;
  • энергетические установки для подводных лодок и надводных кораблей военно-морского флота и космических аппаратов.

Электроэнергетика. На большинстве действующих энергоблоков используются реакторы с водой под давлением (PWR, ВВЭР) или кипящие (BWR, РБМК), позволяющие достигнуть КПД электрогенерирования 31...33%. Быстрые и высокотемпературные (газоохлаждаемые) реакторы обеспечивают КПД электрогенерирования 41 ...43 %. Переход к газотурбинному преобразованию энергии при температуре за газоохлаждаемым реактором около 900 °С позволяет повысить КПД электрогенерирования до 48...49 %.

В 2002 г. общее мировое производство электроэнергии всех работающих атомных энергоблоков (441 блок суммарной установленной электрической мощностью 359 ГВт) равнялось 2574 ТВт-ч (примерно 16% производимой электроэнергии и 6 % мирового топливно-энергетического баланса).

Теплоснабжение с использованием атомных энергоисточников в настоящее время (при его ограниченных объемах) является достаточно подготовленным в техническом отношении, и его практическая реализация рассматривается как имеющая особое значение при замещении органического топлива ядер-ным. Применение ядерной энергетики в целях теплоснабжения населенных пунктов и промышленности началось практически одновременно с производством электричества ядерны-ми энергетическими реакторами.

Существуют три способа централизованного теплоснабжения от атомного источника:

  • атомная тепловая электростанция (АТЭЦ) для комбинированной выработки электроэнергии и теплоты в одном агрегате;
  • атомные котельные, служащие только для производства пара низкого давления и горячей воды (способ реализован в достаточно малых масштабах);
  • использование теплофикационных возможностей конденсационных АЭС для получения теплоты.


Отпуск теплоты для отопления
производят все АЭС России и стран СНГ, а также многие зарубежные (Болгария, Венгрия, Германия, Канада, США, Швейцария и др.). В соответствии с «Энергетической стратегией России на период до 2020 г.» производство тепловой энергии в России с использованием атомных источников увеличится с 6 млн Гкал в 1990 г. до 15 млн Гкал в 2020 г. Рост производства тепловой энергии предполагается за счет создания технических возможностей передачи тепловой энергии от АТЭЦ и действующих АЭС. При этом факторами, влияющими на экономическую эффективность теплоснабжения с использованием атомного энергоисточника, являются тип реакторной установки и капиталовложения в нее, концентрация тепловых нагрузок пользователей, протяженность магистральных тепловых сетей, а также сравнительные цены на ядерное и органическое топливо.

Использование тепловой энергии АЭС в промышленном масштабе в странах бывшего СССР было начато в конце 50-х гг. на Сибирской АЭС, где теплота использовалась для обогрева промышленных помещений и жилых домов. Высокая надежность и безопасность систем теплоснабжения была продемонстрирована на Билибинской АТЭЦ, работающей на Чукотке с 1974 г. Последний, четвертый, энергоблок был пущен в 1976 г. БиАТЭЦ - единственная в мире атомная станция, спроектированная для производства электроэнергии и теплоты для производственных и бытовых нужд Крайнего Севера в условиях вечной мерзлоты.

В России и за рубежом разработаны проекты реакторов средней и малой мощности, предназначенные только для теплофикационных целей - АСТ-500 (Россия), NHR-200 (Китай), SES-10 (Канада), Geyser (Швейцария и др.), а также для двухцелевого использования, т.е. для выработки теплоты и электричества -ВК-300, РУТА, АТЭЦ-200, АБВ, Саха-32 и КЛТ-40 (Россия), SMART (Республика Корея), CAREM-25 (Аргентина), MRX (Япония), ISIS (Италия).

Степень проработанности проектов варьируется от эскизного до рабочего. Для некоторых проектов построены и работают демонстрационные установки (SDR для SES-10, NHR-5 для NHR-200).

Теплота высокого температурного потенциала (до 1000 °С и выше), необходимая для химической промышленности, производства водорода, черной металлургии и других энергоемких технологий, может быть получена в охлаждаемых гелием реакторах. Реализация разработанных проектов таких реакторов и обеспечиваемых ими энерготехнологических комплексов технически реальна, но при современной стоимости органического топлива предпочтение отдается традиционным технологиям, использующим это топливо.

Опреснение. Одной из значительных и перспективных областей применения реакторов малой и средней мощности может стать опреснение морской воды и других сильно минерализованных и засоленных вод (шахтных и т.п.). Крупномасштабное производство пресной воды на основе применения ядерной энергии впервые было освоено в СССР. В 1973 г. в Казахстане был введен в эксплуатацию крупный промышленный водоопреснительный комплекс с быстрым реактором БН-350 с жидкометаллическим (натриевым) теплоносителем.

Многолетний опыт эксплуатации этого комплекса, многочисленные отечественные и зарубежные проектные проработки опреснительных установок с различными типами реакторов, детальное изучение проблемы в рамках исследовательских программ Международного агентства по атомной энергии (МАГАТЭ) позволяют считать ядерные реакторы экономически перспективными источниками энергоснабжения опреснительных установок, обеспечивающими возможность производства пресной воды на обширных территориях с децентрализованным энергоснабжением, что характерно для многих вододефицитных районов мира.

Транспортные энергетические установки.
Судовые и корабельные ядерные установки были спроектированы и построены в России, США, ФРГ, Японии, Великобритании, Франции, Китае. Первое в мире атомное гражданское судно - атомный ледокол "Ленин" -было построено в 1959 г., а далее введена в эксплуатацию серия атомных ледоколов ("Арктика", "Сибирь", "Россия", "Советский Союз", "Таймыр", "Вайгач", "Ямал") и контейнеровоз-лихтеровоз "Севморпуть". Опыт гражданского атомного судостроения в других странах (США - "Саванна", 1962 г.; ФРГ - "Отто Ганн", 1968 г.; Япония - "Муцу", 1974 г.) был несравненно меньшим.

Суммарная безаварийная работа ЯЭУ на российских ледоколах и лихтеровозе превысила 160 реакторо-лет; наработка оборудования на первых ЯЭУ составила более 100... 120 тыс.ч с сохранением работоспособности. За 35 лет эксплуатации атомных ледоколов и 9 лет эксплуатации "Севморпути" на них не было ядерно- или радиационно опасного инцидента, который привел бы к срыву рейса, облучению персонала или отрицательному воздействию на окружающую среду. Не отмечалось случаев профессионального заболевания, связанного с работой на реакторной установке.

Первые атомные подводные лодки были построены и переданы флоту в США в 1954 г., в России - в 1958 г. Впоследствии подводные лодки начали строить в Великобритании, Франции и Китае (соответственно 1963, 1971 и 1974 гг.). В России в период с 1957 г. по 1995 г. построена 261 атомная подводная лодка; основная часть АПЛ имеет по два ядерных реактора.

В условиях ограничения и сокращения вооружений на повестку дня поставлены задачи создания эффективной технологии утилизации снятых с эксплуатации атомных подводных лодок, а также - выбора и экономического обоснования новых областей применения эффективных технологий судовых ядерных энергетических установок. Среди последних лидируют:

плавучие атомные электростанции для снабжения электроэнергией и теплотой отдаленных регионов, не имеющих централизованного энергоснабжения.

К ним относятся

  • северное и восточное побережья России, территории вдоль сибирских рек, некоторые островные страны Тихого океана и др.;
  • плавучие атомные энергоблоки для опреснения морской воды;
  • подводные аппараты для изучения Мирового океана, обследования затонувших судов, освоения придонных территорий, промышленной добычи железо-марганцевых конкреций и других полезных ископаемых со дна морей и океанов.

Освоение месторождения арктического континентального шельфа. В 90-е гг. прошлого века в России началась разработка проектов освоения месторождений арктического континентального шельфа. Общие (извлекаемые) запасы углеводородов на акватории Северного Ледовитого океана оцениваются в 100 млрд т у.т. Исследования российских проектных организаций показали возможность применения ядерной энергии для решения широкого круга задач энергообеспечения морского нефтегазового технологического цикла на арктическом шельфе. Появились проекты ядерного энергообеспечения добычи углеводородов на платформах в Баренцевом море, транспорта газа по подводным газопроводам на большие расстояния, крупнотоннажных подводных челночных танкеров (проекты атомного подводного ледокольного танкера КБ «Малахит», г. Санкт-Петербург; атомного подводного танкера для перевозки жидкого топлива из России в Японию, КБ «Лазурит», г. Нижний Новгород).

В рамках проекта освоения гигантского Штокмановского газоконденсатного месторождения выполнена оценка и показана возможность создания атомной подводной станции для перекачки природного газа по протяженным подводным газопроводам на большой глубине. В проектах новых установок использованы технические решения из обширного российского опыта проектирования и эксплуатации ЯЭУ с реактором с водой под давлением для Военно-морского флота и атомных ледоколов.

Ядерные энергетические установки на космических аппаратах могут использоваться как бортовые источники энергии или/и двигатели и имеют безусловные преимущества для космических ракетных кораблей при дальних межпланетных полетах, когда химические источники и/или поток солнечного излучения не могут обеспечить необходимую энерговооруженность экспедиции.

В России одним из основных направлений в разработке космических ЯЭУ является использование реакторов со встроенными в активную зону термоэмиссионными преобразователями - эффективных источников энергии для доставки космических аппаратов на геостационарную и другие энергоемкие орбиты с помощью электрореактивной двигательной установки (ЭРДУ).

Первые летные испытания космической ЯЭУ «Бук» мощностью 3 кВт(эл.) с термоэмиссионными преобразователями, разрабатываемой с 1956 г., прошли в октябре 1970 г. (ИСЗ «Космос-367»). До 1988 г., когда был запущен ИСЗ «Космос-1932», в космос было отправлено 32 ЯЭУ «Бук».

Проводившиеся с 1958 г. разработки термоэмиссионной ЯЭУ «Топаз» мощностью 5...7 кВт(эл.) с многоэлементными электрогенерирующими каналами (ЭГК) включали проведение (начиная с 1970 г.) ресурсных испытаний на мощности семи образцов ЯЭУ. Первый в мире космический запуск термоэмиссионной ЯЭУ состоялся 02.02.1987 г. в составе экспериментального космического аппарата «Плазма-А» (ИСЗ «Космос-1818», орбита высотой 810/970 км). ЯЭУ проработала в автономном режиме 142 сут, вырабатывая свыше 7 кВт электроэнергии. Второй пуск ЯЭУ «Топаз» был осуществлен 10.07.1987 г. (ИСЗ Космос-1867», орбита высотой 797/813 км). Эта установка проработала в космосе 342 сут, выработав более 50 тыс. кВт-ч электроэнергии.

Значительный объем исследований, проектных и конструкторских разработок, дореак-торных и реакторных испытаний выполнен для решения задачи создания ядерного ракетного двигателя (ЯРД) прямого действия, в котором водород, нагретый в активной зоне до температуры 2500...2800 К, расширяется в сопловом аппарате, обеспечивая получение удельного импульса около 850...900 с. Наземные испытания реакторов-прототипов подтвердили техническую возможность создания ЯРД с тягой несколько десятков (сотен) тонн.

Одной из наиболее предпочтительных схем применения ядерных реакторов в составе космических аппаратов является их использование для двух целей: на этапе вывода космических аппаратов с низкой околоземной орбиты на орбиту функционирования, как правило геостационарную, для электроснабжения маршевой ЭРДУ и на последующем этапе целевого использования - для энергопитания бортовой и функциональной аппаратуры космических аппаратов на конечной орбите.

В качестве нетрадиционного подхода к созданию ЯЭУ, предназначенной для работы в двух режимах со значительно различающейся электрической мощностью 100. ..150 кВт и 20...30 кВт со сроком службы до 15- 20 лет, ракетно-космической корпорацией «Энергия» предлагается новый принцип построения ЯЭУ. Для этого варианта предусмотрено разделение функций преобразования тепловой энергии в электрическую в транспортном режиме и режиме целевого использования космического аппарата между двумя соответствующими типами преобразователей: встроенным в активную зону реактора термоэмиссионным преобразователем, который применяется для энергопитания ЭРДУ (транспортный режим) и имеет короткий ресурс до 1,5 года, и размещенным вне активной зоны (для длительного энергопитания аппаратуры космического аппарата). Необходимая для функционирования энергия (в последнем случае) доставляется теплоносителем, нагреваемым в активной зоне реактора.

Прототипом термоэлектрического генератора рассматриваемой двухрежимной ЯЭУ может служить термоэлектрический генератор, разрабатывавшийся в США для установки SP-100 (ядерная энергоустановка на основе быстрого реактора, охлаждаемого литием, в которой кремний-германиевый термоэлектрический преобразователь планировался в качестве основного генератора энергии).

Исследовательские реакторные установки. По данным МАГАТЭ, на август 2000 г. в 60 странах мира находится в эксплуатации 288 исследовательских реакторов, их суммарная тепловая мощность составляет 3205 МВт (рис. В.2.1). Число действующих исследовательских реакторов в основных странах мира: Россия - 63, США - 55, Франция - 14, Германия- 14, Япония-20, Канада-9, Китай - 9, Великобритания - 3.324 исследовательских реактора остановлены и выведены из эксплуатации по причинам выработки ресурса основного технологического оборудования или завершения программ запланированных исследований. Из них по 21 реактору имеются проекты и выполняются работы по снятию с эксплуатации.

Рис. В.2.1. Число исследовательских реакторов в мире и их суммарная тепловая мощность

Получение изотопной продукции. Радиоактивные и стабильные нуклиды используются в составе различных приборов и установок, а также в качестве меченых соединений для научных исследований, технической и медицинской диагностики, лечения и изучения технологических процессов (табл. В.2.1 и В.2.2).




Радионуклиды получают путем облучения специальных материалов-мишеней в ядерных реакторах, а также на сильноточных ускорителях заряженных частиц - циклотронах и электронных ускорителях (табл. В.2.3, В.2.4).

Некоторые радионуклиды выделяют из облученного ядерного топлива как продукты деления. Ряд короткоживущих радионуклидов, предназначенных в основном для медицинских целей, получают непосредственно в клиниках с помощью так называемых генераторов короткоживущих нуклидов, которые представляют собой генетически связанные системы из двух нуклидов: долгоживущего (материнского) и короткоживущего (дочернего), который можно выделять по мере его накопления.

Промышленное применение подземных ядерных взрывов (ПЯВ) исследовалось с конца 1950-х гг. в основном в СССР и США. Впоследствии эта деятельность была регламентирована такими международными соглашениями, как договор «Об ограничении подземных испытаний ядерного оружия» (1974 г.); договор «О подземных ядерных взрывах в мирных целях» (1976 г.), а также Протоколом к последнему договору (1990 г.). В соответствии с этими соглашениями мощность каждого промышленного ПЯВ не должна превышать 150 кт. Суммарная мощность всех проведенных «мирных» ПЯВ не превышает 3...4 Мт.

В 1957 г. в Национальной Ливерморской лаборатории им. Лоуренса (США) по инициативе Э. Теллера и Г. Сиборга была разработана экспериментальная программа "Ploughshare" («Плужный лемех»), в рамках которой в период до 1973 г., когда эта программа была прекращена по техническим и экологическим соображениям, было проведено 27 ПЯВ. Возможными направлениями практического применения ПЯВ рассматривались: разработка нефтеносных сланцев в шт. Колорадо, углубление Панамского канала, сооружение гаваней на Аляске и на северо-западе Австралии, строительство канала через перешеек Кра в Таиланде и т.п.

Из 27 ПЯВ вне полигона в шт. Невада было проведено 4 ПЯВ. Из них наиболее удачным был взрыв 1967 г. с целью интенсификации добычи газа на месторождении в шт. Нью-Мексико, способствовавший 7-кратному увеличению давления в скважине. Успешными были также 5 ПЯВ на полигоне в шт. Невада, проведенные с экскавационными (на выброс грунта) целями.

Значительно более масштабный характер носило использование промышленных ПЯВ в СССР. Начиная с 15 января 1965 г., когда на Грачевском нефтяном месторождении в Башкирии успешно был проведен эксперимент по интенсификации с помощью ПЯВ притока нефти и газа на промысловых скважинах, по 1987 г. было проведено 115 ПЯВ (из них 81 -на территории России).

Их использовали для глубинного сейсмозондирования земной коры и мантии (39); интенсификации добычи нефти (20) и газа (1); сооружения подземных емкостей для углеводородного сырья (36); глушения аварийных газовых фонтанов на промыслах (5); экскавации грунта на трассе канала в связи с реализацией проекта переброски части стока северных рек европейской части России на юг (1 тройной ПЯВ); создания плотин (2) и водохранилищ (9); дробления рудных залежей (3); захоронения биологически опасных промстоков (2); предупреждения газовых выбросов в угольной шахте (1).

Ядерная энергия деления атомов тяжелых металлов уже широко используется во многих странах. В некоторых странах доля этого вида энергии достигает 70 % (Франция, Япония). Вероятно в ближайшие 50–100 лет ядерная энергия деления будет составлять серьезную конкуренцию свеем другим видам энергии, используемой человечеством. Мировые запасы урана, основного носителя ядерной энергии деления, составляет более 5 млн. тонн. Это означает, что запаса ядерной энергии на порядок больше, чем запасов всех ископаемых невозобновляемых источников энергии.

Ядра атомов состоят из двух элементарных частиц, протонов и нейтронов. Совокупность протонов и нейтронов образуют массовое число, состоящее из количества протонов и количества нейтронов в ядре атома:

А = Z p + Z n ,

где Z p – количество протонов в ядре, Z n – количество нейтронов. Масса элементарных частиц измеряется в атомных единицах массы (аем) и в килограммах. Физикам известны с большой точностью массы основных элементарных частиц. В частности, масса протона:

m p = 1.007276 аем = 1.672623·10 -27 кг;

масса нейтрона:

m n = 1.008664 аем = 1.674928·10 -27 кг.

Разница между массой протона и нейтрона невелика, но заметна. Масса электрона, определенное количество которых образуют электронное облако вокруг ядра, примерно в 1823 раза меньше массы протона или нейтрона, поэтому их влиянием, как правило, пренебрегают, по крайней мере, в прикидочных расчетах.

Собранные в ядре атома протоны и нейтроны образуют энергию связи ядра:

E СВЯЗИ = (m p Z p + m n Z n m ЯДРА)∙c 2 .

Эта формула дает энергию в Дж, если масса приведена в килограммах. Из формулы видно, что энергия связи образуется за счет разности между массой ядра и массой отдельных составляющих ядра (за счет так называемого дефекта массы). При делении ядра происходит выделение этой энергии.

Ядра всех элементов подразделяются на:

Стабильные или псевдостабильные, у которых время полураспада более миллиона лет;

Делящиеся спонтанно, нестабильные с периодом полураспада менее миллиона лет.

Однако, существуют элементы, ядра которых допускают искусственное деление, если их ядра подвергаются бомбардировке нейтронами, Эти нейтроны, проникая в ядро, превращают его в нестабильное и вызывают его искусственное деление. В настоящее время используют для целей энергетики три варианта такого искусственного деления:

1. Использование U 2 35 и медленных (тепловых) нейтронов. Тепловые нейтроны имеют скорость движения не более 2000 м/с.

2. Использование Pu 239 илиU 2 33 и медленных (тепловых) нейтронов. ПлутонийPu 239 и уранU 2 33 , в природе не встречаются и получаются искусственным путем при реализации третьего способа.

3. Использование U 2 38 и быстрых нейтронов со скоростью движения порядка 30 000 м/с. Возможно также использованиеTh 232 (ториевый цикл).

Для обеспечения непрерывного деления ядер необходима так называемая цепная реакция деления. Для возникновения цепной реакции необходимо, чтобы в каждом последующем акте деления участвовало больше нейтронов, чем в предыдущем. Делящиеся ядерные топлива являются однокомпонентными. Тепловые нейтроны поглощаются делящимися изотопами наиболее интенсивно. Поэтому в атомных реакторах нейтроны замедляются в специальных веществах-замедлителях - в воде, тяжелой воде, графите, бериллии и др.

Природный уран, добываемый из земной коры, содержит только 0,712% U 2 35 , делящегося при захвате тепловых нейтронов. Остальную массу составляетU 2 38 . Это приводит к необходимости обогащать природный уран добавлением в негоU 2 35 от 1 до 5% для реакторов атомных электростанций.

Рассмотрим процесс получения ядерной реакции деления по первому варианту. В общем случае формула расчета дефекта массы следующая:

где m U - масса ядра урана,m Д - масса всех продуктов деления,m n - масса нейтрона. При такой ядерной реакции выделяется энергия

W = ΔM c 2 .

Теоретические расчеты и опыт показали, что при использовании U 2 35 и поглощении его атомом одного медленного нейтрона появляется два атома продуктов деления и три новый нейтрона. В частности, могут появиться барий и криптон. Реакция имеет следующий вид:

Дефект массы в относительных единицах равен

.

Массы всех участвующих в реакции элементов равны: М U = 235.043915,M Ba = 140.907596,M Kr = 91.905030,m n = 1.008664, все величины в аем. Дефект массы равен:

Таким образом, при расщеплении 1 кг U 2 35 дефект массы составит 0,000910 кг. Выделяемая при этом энергия равна

W = 0,000910∙(3∙10 8) 2 = 8190∙10 10 Дж = 8,19∙10 7 МДж.

Энергетический блок мощностью 1000 МВт за год вырабатывает электрической энергии W Е = 10 3 ∙10 6 ∙3600∙8760 = 3,154∙10 16 Дж или 3,154∙10 10 МДж.

При КПД блока η = 0,4 потребуется в год урана-235:

кг.

Для сравнения определим потребность в антраците

2,25 млн. тонн.

Расчеты произведены для чистого урана-235. Если природный уран обогащается до 3%, общая масса урана составит

M = 962,8/0,03 = 32 093 кг.

Кроме того, на практике используется не металлический уран, который имеет недостаточно высокую температуру плавления, а двуокись урана UO 2 . Рассчитаем общую потребность обогащенного ядерного топлива с использованием двуокиси урана для обеспечения работы энергетического блока мощностью 1000 МВт в течение года. С учетом массы кислорода, доля которого приблизительно равна отношению: 2∙16/238 = 0,134, общая масса ядерного топлива составит:

М ЯТ = 32093∙(1 + 0,314) = 36400 кг = 36,4 тонн.

Легко видеть, что разница в массах органического топлива и ядерного топлива, потребных для производства одного и того же количества энергии колоссальна.

Ранее отмечалось, что основную массу природного урана составляет уран-238, который практически не реагирует на медленные нейтроны, но хорошо взаимодействует с быстрыми нейтронами. При этом становится возможной следующая ядерная реакция:

и частично накапливается. Накопленный плутоний-239 может использоваться в качестве ядерного топлива в реакторе на медленных (тепловых) нейтронах. С помощью такой реакции многократно (почти в 100 раз) повышается эффективность использования природного урана.

В реакторах на быстрых нейтронах возможна организация ториевого цикла с использованием тория-232. Запасы тория в природе превышают запасы урана в 4–5 раз. В результате захвата теплового нейтрона природным торием-232 образуется делящийся изотоп уран-233, который может сжигаться на месте или накапливаться для последующего использования в реакторах на тепловых нейтронах:

Ториевая энергетика, в отличие от урановой, не нарабатывает плутоний и трансурановые элементы. Это важно как с экологической точки зрения, так и с точки зрения нераспространения ядерного оружия.

Ядерные реакторы на ториевом топливе более безопасны, чем на урановом, поскольку ториевые реакторы не обладают запасом реактивности. Поэтому никакие разрушения аппаратуры реактора не способны вызвать неконтролируемую цепную реакцию. Однако до промышленного применения реакторов с ториевым циклом пока еще далеко.

Энергия термоядерного синтеза . При слиянии легких ядер (водород и его изотопы, гелий, литий и некоторые другие) масса ядра после слияния получается меньше суммы масс отдельных ядер до слияния. В результате также получается дефект массы и, как следствие выделение энергии. Привлекательность использования этой энергии обусловлена практически неисчерпаемыми запасами сырья для ее осуществления.

Для осуществления термоядерного синтеза необходимы сверхвысокие температуры порядка 10 7 ºKи выше. Необходимость сверхвысоких температур обусловлена тем, что из-за сильного электростатического отталкивания ядра в процессе теплового движения могут сблизиться на малые расстояния и прореагировать только при достаточно большой кинетической энергии их относительного движения. В естественных условиях термоядерные реакции происходят в недрах звезд, являясь основным источником излучаемой ими энергии. Искусственная термоядерная реакция получена только в виде неуправляемого взрыва водородной бомбы. В то же время в течение многих лет ведутся работы по управляемому термоядерному синтезу.

Существуют два направления реализации проекта получения полезной энергии на основе управляемой реакции термоядерного синтеза.

Первое направление связано с использованием тороидальной камеры, в которой магнитное поле сжимает ядра сливающихся элементов, нагретых до нескольких миллионов градусов. В целом устройство называется ТОКАМАК (расшифровывается как тороидальная камера с магнитными катушками). По этому пути идут европейские страны и Россия.

Второе направление использует лазеры для нагрева и сжатия ядер. Так проект NIF-192, реализуемый в Ливерпульской национальной лаборатории в Калифорнии использует 192 лазера, которые расположены по окружности и своим одновременным излучением сжимает дейтерий и тритий.

Результаты обнадеживающие, но не позволяющие сделать выводы о конкретных сроках получения ядерной энергии синтеза в практических целях.

Энергия ядерной реакции сосредоточена в ядре атома. Атом – крошечная частица из которых состоит вся материя во Вселенной.

Количество энергии при ядерном делении огромно и она может использоваться для создания электричества, но её сначала необходимо освободить от атома.

Получение энергии

Использование энергии ядерной реакции происходит с помощью оборудования, которое может управлять атомным делением для производства электроэнергии.

Топливо, используемое для реакторов и производства энергии чаще всего гранулы элемента урана. В ядерном реакторе атомы урана вынуждены разваливаться. Когда они разделились, атомы выделяют мельчайшие частицы, называемые продуктами деления. Продукты деления воздействуют на другие атомы урана для разделения – начинается цепная реакция. Энергия ядра, выделяющаяся из этой цепной реакции создает тепло. Тепло от атомного реактора сильно нагревает его, поэтому он должен охлаждаться. Технологически лучший охлаждающий агент обычно вода, но некоторые ядерные реакторы используют жидкий металл или расплавленные соли. Охлаждающее вещество, нагретое от ядра, производит пар. Пар воздействует на паровую турбину поворачивая её. Турбина через механическую передачу подключена к генератору, который вырабатывает электричество.
Реакторы управляются с помощью управляющих стержней которые можно настроить на количество вырабатываемого тепла. Управляющие стержни изготавливают из материала, как кадмий, гафний или бор чтобы поглощать некоторые из продуктов созданные ядерным делением. Стержни присутствуют во время цепной реакции для контроля реакции. Удаление стержней позволит сильнее развиться цепной реакции и создать больше электроэнергии.

Около 15 процентов мирового электричества генерируется атомными электростанциями.

Соединенные Штаты имеют более чем 100 реакторов, хотя США создает большую часть своей электроэнергии от ископаемого топлива и гидроэлектроэнергии.

В России 33 энергоблока на 10 атомных электростанциях -15% энергобаланса страны.

Литва, Франция и Словакия потребляют большую часть электроэнергии от атомных электростанций.

Ядерное топливо используемое для получения энергии

Уран – это топливо наиболее широко используемое для того чтобы производилась энергия ядерной реакции. Это потому что атомы урана относительно легко делятся на части. Конкретный тип урана для производства под названием U-235, встречается редко. U-235 составляет менее одного процента урана в мире.

Уран добывается в Австралии, Канаде, Казахстане, России, Узбекистане и должен быть обработан, прежде чем его можно будет использовать.

Поскольку ядерное топливо может использоваться для создания оружия, то производство относится к договору о нераспространении такого оружия по импортированию урана или плутония или другого ядерного топлива. Договор способствует мирному использованию топлива, а также ограничению распространения такого типа оружия.

Типичный реактор использует около 200 тонн урана каждый год . Сложные процессы позволяют некоторой части урана и плутония повторно обогащаться или перерабатываться. Это уменьшает количество добычи, извлечения и обработки.

Ядерная энергии и люди

Ядерная атомная энергия производит электричество, которое может использоваться для электропитания домов, школ, предприятий и больниц.

Первый реактор для производства электроэнергии был сооружен в штате Айдахо, США и экспериментально начал питать себя в 1951 году.

В 1954 году в Обнинске, Россия, была создана первая атомная электростанция, предназначенных для обеспечения энергии для людей.

Строительство реакторов с извлечением энергия ядерной реакции требует высокий уровень технологий и только страны, которые подписали договор о нераспространении могут получать уран или плутоний, который требуется. По этим причинам большинство атомных станций расположены в развитых странах мира.

Атомные электростанции производят возобновляемую, экологически чистые ресурсы. Они не загрязняют воздух или производят выбросы парниковых газов. Они могут быть построены в городской или сельской местности и радикально не изменяют окружающую среду вокруг них.

Радиоактивный материал электростанций

Радиоактивный материал в р еакторе безопасен так как охлаждается в отдельной структуре, называемой градирни. Пар превращается обратно в воду и может снова использоваться для производства электроэнергии. Избыточный пар просто перерабатывается в атмосферу, где он не вредит как чистая вода.

Однако, энергия ядерной реакции имеет побочный продукт в виде радиоактивного материала. Радиоактивный материал представляет собой совокупность нестабильных ядер. Эти ядра теряют свою энергию и могут повлиять на многие материалы вокруг них, в том числе живые организмы и окружающую среду. Радиоактивный материал может быть чрезвычайно токсичным, вызывая болезни, увеличивая риск для рака, болезни крови и распад костей.

Радиоактивными отходами является то, что осталось от эксплуатации ядерного реактора.

Радиоактивные отходы покрывают защитную одежду, которую носили рабочие, инструменты и ткани, которые были в контакте с радиоактивной пылью. Радиоактивные отходы долговечны. Материалы, как одежда и инструменты, могут быть радиоактивны тысячи лет. Государство регулирует, как эти материалы удаляются, чтобы не загрязнять что-нибудь еще.

Используемое топливо и стержни чрезвычайно радиоактивны. Гранулы используемого урана должны храниться в специальных контейнерах, которые выглядят как большие бассейны.Некоторые заводы хранят используемое топливо в надземных резервуарах сухого хранения.

Вода, охлаждающая топливо, не контактирует с радиоактивностью поэтому безопасна.

Известны также у которых принцип работы несколько другой.

Использование атомной энергии и радиационная безопасность

Критики использования энергии ядерной реакции беспокоятся, что хранилища для радиоактивных отходов будут течь, иметь трещины или разрушаться. Радиоактивный материал затем мог бы загрязнять почвы и грунтовых вод вблизи объекта. Это может привести к серьезным проблемам со здоровьем людей и живых организмов в этом районе. Всем людям пришлось бы эвакуироваться.

Это то, что произошло в Чернобыле, Украина, в 1986 году. Паровой взрыв в одном из электростанций четвертого ядерного реактора разрушил его и возник пожар. Образовалось облако радиоактивных частиц, который упал на землю или дрейфовал с ветром, а частицы вошли в круговорот воды в природе как дождь. Большинство радиоактивных выпадений упали в Белоруссии.

Экологические последствия Чернобыльской катастрофы произошли немедленно. В километрах вокруг объекта сосновый лес засох, а красный цвет мертвых сосен получил в этом районе прозвище Рыжий лес. Рыба от близлежащей реки Припять получила радиоактивность и люди больше не смогут её употребить. Крупный рогатый скот и лошади умерли. Более 100 000 человек эвакуированы после катастрофы, но количество человеческих жертв Чернобыля трудно определить.

Последствия радиационного отравления появляются только после многих лет. У таких болезней как рак трудно определить источник.

Будущее ядерной энергии

Реакторы используют деление или расщепление атомов для производства энергии.

Энергия ядерной реакции может также производиться путем слияния или присоединения атомов вместе. Производится . Солнце, например, постоянно подвергается ядерному синтезу водородных атомов формируя гелий. Так как жизнь на нашей планете зависит от Солнца, можно сказать, что расщепление делает возможным жизнь на Земле.

Атомные электростанции пока не имеют возможности безопасно и надежно производить энергию путем ядерного синтеза (соединения), но ученые исследуют ядерный синтез, потому что этот процесс скорее всего будет безопасным и экономически более эффективным как альтернативный вид энергии.

Энергия ядерной реакции огромна и должна использоваться людьми.