По каким механизмам осуществляется терморегуляция организма человека. Терморегуляция человека: что это такое? Б. Ядро и внешняя оболочка тела

Регуляция температуры заключается в согласовании процессов теплопродукции (химическая терморегуляция) и теплоотдачи (физическая терморегуляция).
Процессы теплопродукции. Во всех органах вследствие процессов обмена веществ происходит теплопродукция. Поэтому кровь, которая оттекает от органов, как правило, имеет более высокую температуру, чем та, притекающей. Но роль различных органов в теплопродукции разная. В состоянии покоя на печень приходится около 20% общей теплопродукции, на другие внутренние органы - 56%, на - 20%, при физической нагрузке на скелетные мышцы - до 90%, на внутренние органы - только 8%.
Таким образом, мощным резервным источником теплопродукции является мышцы при их сокращении. Изменение активности их метаболизма при локомоциях - основной механизм теплопродукции. Среди различных локомоций можно выделить несколько этапов участия мышц в теплопродукции.
1. Терморегуляционные тонус. При этом мышцы не сокращаются. Повышаются только их тонус и метаболизм. Этот тонус возникает вообще в мышцах шеи, туловища и конечностей. Вследствие этого теплопродукция повышается на 50-100%.
2. Дрожь возникает неосознанно и заключается в периодической активности высокопороговых двигательных единиц на фоне терморегуляционные тонуса. При дрожании вся энергия направлена лишь на увеличение теплообразования, в то время как при обычных локомоциях часть энергии расходуется на перемещение соответствующей конечности, а часть - на термогенез. При дрожании теплопродукция повышается в 2-3 раза. Дрожь начинается часто с мышц шеи, лица. Это объясняется тем, что прежде всего должен повыситься температура крови, которая течет к головному мозгу.
3. Произвольные сокращения заключаются в сознательном повышении сокращения мышц. Это наблюдается в условиях низкой внешней температуры, когда первых двух этапов не достаточно. При произвольных сокращениях теплопродукция может увеличиться в 10-20 раз.
Регуляция теплопродукции в мышцах довьязана с влиянием а-мотонейронов на функцию и метаболизм / мышц, в других тканях - симпатической нервной системы и катехоламинов (повышают интенсивность метаболизма на 50%) и действием гормонов, особенно тироксина, который повышает теплопродукции почти вдвое.
Значительная роль в термогенез липидов, которые выделяют при гидролизе значительно больше энергии (9,3 ккал / г), чем углеводы (4,1 ккал / г). Особое значение, в частности у детей, имеет бурый жир.
Процессы теплоотдачи происходит следующими путями - радиация, конвекция, испарения и теплопроводность.
Радиация происходит с помощью инфракрасного длинноволнового излучения. Для этого нужен градиент температур между теплой кожей и холодными стенами и другими предметами окружающей среды. Таким образом, величина радиации зависит от температуры и поверхности кожи.
Теплопроводность осуществляется при непосредственном контакте тела с предметами (стул, кровать и т.д.). При этом скорость передачи тепла от более нагретого тела к менее нагретому предмету определяется температурным градиентом и их термопровиднистю. Отдача тепла этим путем значительно (в 14 раз) увеличивается при нахождении человека в воде. Частично путем проведения тепло передается от внутренних органов к поверхности тела. Но этот процесс тормозится вследствие низкой теплопроводности жира.
Конвекционный путь. Воздух, контактирующего с поверхностью тела, при наличии градиента температур нагревается. При этом оно становится более легким и, поднимаясь от тела, освобождает место для новых порций воздуха. Таким образом оно забирает часть тепла. Интенсивность естественной конвекции может быть увеличена за счет дополнительного движения воздуха, уменьшение препятствий при поступлении его к телу (соответствующим одеждой).
Испарение пота. При комнатной температуре в раздетой человека около 20% тепла отдается за счет испарения.
Теплопроводность , конвекция и излучение являются пассивными путями теплоотдачи, основанные на законах физики. Они эффективны только при сохранении положительного температурного градиента. Чем меньше разница температуры между телом и окружающей средой, тем меньше тепла отдается. При одинаковых показателях или при высокой температуре окружающей среды упомянутые пути не только не эффективны, но при этом происходит нагрев тела. В этих условиях в организме срабатывает только один механизм отдачи тепла, связанный с процессами потоотделение и потовипаровування. Здесь используются как физические закономерности (затраты энергии на процесс испарения), так и биологические (потоотделения). Охлаждению кожи способствует то, что для испарения 1 мл пота расходуется 0,58 ккал. Если не происходит
испарение пота, то эффективность теплоотдачи резко снижается. М
Скорость испарения щоту зависит от градиента температуры и насыщения водяным паром окружающего воздуха. Чем выше влажность, тем менее эффективным становится этот путь теплоотдачи. Резко уменьшается результативность теплоотдачи при нахождении в воде или в плотном одежде. При этом организм вынужден компенсировать отсутствие потовипаровування за счет увеличения потоотделения.
Испарение имеет два механизма: а) перспирация - без участия потовых желез б) испарение - при активном участии потовых желез.
Перспирация - испарение воды с поверхности легких, слизистых оболочек, кожи, которая всегда влажная. Это испарение не регулируется, оно зависит от градиента температур и влажности окружающего воздуха, его величина составляет около 600 мл / сут. Чем выше влажность, тем менее эффективен этот вид теплоотдачи.
Механизм секреции пота. Потовая железа состоит из двух частей: собственно железы, которая расположена в субдермальному слое, и выводных протоков, открывающихся на поверхности кожи. В железе образуется первичный секрет, а в протоках благодаря реабсорбции формируется вторичный секрет - пот.
Первичный секрет подобный плазмы крови. Разница заключается в том, что в этом секрете нет белков и глюкозы, меньше Na +. Так, в первоначальном поте концентрация натрия составляет около 144 нмоль / л, хлора - 104 нмоль / л. Эти ионы активно абсорбируются при прохождении пота по выводных протоках, обеспечивающий абсорбцию воды. Процесс абсорбции во многом зависит от скорости образования и продвижения пота что эти процессы активны, тем больше Na + и Сl-остается. При сильном потоотделении в поту может оставаться до половины концентрации этих ионов. Сильное потоутворення сопровождается увеличением концентрации мочевины (до 4 раз выше, чем в плазме) и калия (до 1,2 раза больше, чем в плазме). Суммарная высокая концентрация ионов, образуя высокий уровень осмотического давления, обеспечивает снижение реабсорбции и выделение с потом большого количества воды.
При сильном потоотделении может тратиться много NaCl (до 15-30 г / сут). Однако в организме действуют механизмы, обеспечивающие сохранение этих важных ионов при большом потоотделении. Они участвуют в процессах адаптации, в частности, альдостерон усиливает реабсорбцию Na +.
Функции потовых желез регулируются особыми механизмами. На их активность влияет симпатическая нервная система, но медиатором здесь ацетилхолин. Секреторные клетки, кроме М-холинорецепторов, имеют также адренорецепторы, которые реагируют на катехоламины кровГ. Активизация функции потовых желез сопровождается увеличением ее кровоснабжения.
Количество выделяемого пота может достигать 1,5 л / ч, а в адаптированных людей - до 3 л / час.
При комнатной температуре в раздетой человека около 60% тепла отдается за счет радиации, около 12-15% - конвекции воздуха, около 20% - испарение, 2-5% - теплопроводности. Но это соотношение зависит от ряда условий, в частности от температуры внешней среды.
Главную роль в регуляции процессов теплоотдачи играют изменения кровоснабжение кожи. Сужение сосудов кожи, открытию артериовенозных анастомозов способствует меньшему притоку тепла от ядра к оболочке и сохранению его в организме. Напротив, при расширении сосудов кожи ее температура может повышаться на 7-8 ° С. При этом увеличивается и теплоотдача.
Условно кожу можно назвать радиаторной системой организма. Кровоток в коже может меняться от 0 до 30% МОК. Тонус сосудов кожи контролируется симпатической нервной системой.
Таким образом, температура тела - баланс между процессами теплопродукции и теплоотдачи. Когда теплопродукция преобладает над теплоотдачей, температура тела повышается и, наоборот, если теплоотдача выше, чем теплопродукция, температура организма снижается.

Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды. Это постоянство температуры тела носит название изотермии.

Изотермия свойственна только так называемым гомойотермным, или теплокровным, животным и отсутствует у пойкилотермных, или холоднокровных, животных, температура тела которых переменна и мало отличается от температуры окружающей среды.

Изотермия в процессе онтогенеза развивается постепенно. У новорожденного ребенка способность поддерживать постоянство температуры тела далеко не совершенна. Вследствие этого могут наступать охлаждение (гипотермия) или перегревание (гипертермия) организма при таких температурах окружающей среды, которые не оказывают влияния на взрослого человека. Равным образом даже небольшая мышечная работа, например длительный крик ребенка, может привести к повышению температуры его тела. Организм недоношенных детей еще менее способен поддерживать постоянство температуры тела, которая у них в значительной мере зависит от температуры среды обитания.

Теплообразование происходит вследствие непрерывно совершающихся экзотермических реакций. Эти реакции протекают во всех органах и тканях, но с разной интенсивностью. В тканях и органах, производящих активную работу - в мышечной ткани, печени, почках, - выделяется большее количество тепла, чем в менее активных - соединительной ткани, костях, хрящах.

Потеря тепла органами и тканями зависит в большой степени от места их расположения: поверхностно расположенные органы, например кожа, скелетные мышцы, отдают больше тепла и охлаждаются сильнее, чем внутренние органы, более защищенные от охлаждения.

Температура тела у здорового человека равна 36,5-36,9 °С. Покой и сон понижают, а мышечная деятельность повышает температуру тела. Максимальная температура наблюдается в 16-18 ч вечера, минимальная - в 3-4 ч утра. У рабочих, длительно работающих в ночных сменах, колебания температуры могут быть обратными.

Постоянство температуры тела у человека может сохраняться лишь при условии равенства теплообразования и теплопотери всего организма. Это достигается с помощью физиологических механизмов терморегуляции. проявляется в результате взаимодействия процессов теплообразования и теплоотдачи, регулируемых нейроэндокринными механизмами. Терморегуляцию принято разделять на химическую и физическую.

Химическая терморегуляция осуществляется путем изменения уровня теплообразования, т.е. усиления или ослабления интенсивности обмена веществ в клетках организма, и имеет важное значение для поддержания постоянства температуры тела как в нормальных условиях, так и при изменении температуры окружающей среды.

Наиболее интенсивное теплообразование в организме происходит в мышцах. Даже если человек лежит неподвижно, но мускулатура его напряжена, интенсивность окислительных процессов, а вместе с тем и теплообразование повышаются на 10%. Небольшая двигательная активность ведет к увеличению теплообразования на 50-80%, а тяжелая мышечная работа - на 400-500%.

В условиях холода теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии. Это обусловлено тем, что охлаждение поверхности тела, действуя на рецепторы, воспринимающие холодовое раздражение, рефлекторно возбуждает беспорядочные непроизвольные сокращения мышц, проявляющиеся в виде дрожи (озноб). При этом обменные процессы организма значительно усиливаются, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплообразования. Даже произвольная имитация дрожи увеличивает теплообразование на 200%. Если в организм введены миорелаксанты - вещества, нарушающие передачу нервных импульсов с нерва на мышцу и тем самым устраняющие рефлекторную мышечную дрожь, даже при повышении температуры окружающей среды гораздо быстрее наступает понижение температуры тела.

В химической терморегуляции значительную роль играют также печень и почки. Температура крови печеночной вены выше температуры крови печеночной артерии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает.

Освобождение энергии в организме совершается за счет окислительного распада белков, жиров и углеводов; поэтому все механизмы, которые регулируют окислительные процессы, регулируют и теплообразование.

Физическая терморегуляция осуществляется путем изменений отдачи тепла организмом. Особо важное значение она приобретает в поддержании постоянства температуры тела во время пребывания организма в условиях повышенной температуры окружающей среды.

Теплоотдача осуществляется путем теплоизлучения {радиационная теплоотдача), или конвекции, т.е. движения и перемещения нагреваемого теплом воздуха, теплопроведения, т.е. отдачи тепла веществам, непосредственно соприкасающимся с поверхностью тела, и испарения воды с поверхности кожи и легких.

У человека в обычных условиях потери тепла путем теплопроведения небольшие, так как воздух и одежда являются плохими проводниками тепла. Радиация, испарения и конвекция протекают с различной интенсивностью в зависимости от температуры окружающей среды. У человека в состоянии покоя при температуре воздуха около 20 °С и суммарной теплоотдаче, равной 419 кДж (100 ккал) в час, с помощью радиации теряется 66%, за счет испарения воды - 19%, конвекции - 15% от общей потери тепла организмом. При повышении температуры окружающей среды до 35 °С теплоотдача с помощью радиации и конвекции становится невозможной и температура тела поддерживается на постоянном уровне исключительно с помощью испарения воды с поверхности кожи и альвеол легких.

Одежда уменьшает теплоотдачу. Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух - плохой проводник тепла. Теплоизолирующие свойства одежды тем выше, чем мельче ячеистость ее структуры, содержащая воздух. Этим объясняются хорошие теплоизолирующие свойства шерстяной и меховой одежды. Температура воздуха под одеждой составляет 30 °С. Наоборот, обнаженное тело теряет тепло, так как воздух на его поверхности все время сменяется. Поэтому температура кожи обнаженных частей тела намного ниже, чем одетых.

На холоде кровеносные сосуды кожи, главным образом артериолы, сужаются: большее количество крови поступает в сосуды брюшной полости, и тем самым ограничивается теплоотдача. Поверхностные слои кожи, получая меньше теплой крови, излучают меньше тепла - теплоотдача уменьшается. При сильном охлаждении кожи, кроме того, происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче.

Перераспределение крови, происходящее на холоде - уменьшение количества крови, циркулирующей через поверхностные сосуды, и увеличение количества крови, проходящей через сосуды внутренних органов, - способствует сохранению тепла во внутренних органах.

При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается. Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительное количество крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче с помощью радиации и конвекции.

Для сохранения постоянства температуры тела человека при высокой температуре окружающей среды основное значение имеет испарение пота с поверхности кожи, что зависит от относительной влажности воздуха. В насыщенном водяными парами воздухе вода испаряться не может. Поэтому при высокой влажности атмосферного воздуха высокая температура переносится тяжелее, чем при низкой влажности. В насыщенном водяными парами воздухе (например, в бане) пот выделяется в большом количестве, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла: только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота называется эффективным потоотделением ).

Плохо переносится непроницаемая для воздуха одежда (резиновая и т.п.), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насыщается парами и дальнейшее испарение пота прекращается.

Человек плохо переносит сравнительно невысокую температуру окружающей среды (32 °С) при влажном воздухе. В совершенно сухом воздухе человек может находиться без заметного перегревания в течение 2-3 ч при температуре 50-55 °С.

Так как некоторая часть воды испаряется легкими в виде паров, насыщающих выдыхаемый воздух, дыхание также участвует в поддержании температуры тела на постоянном уровне. При высокой окружающей температуре дыхательный центр рефлекторно возбуждается, при низкой - угнетается, дыхание становится менее глубоким.

Таким образом, постоянство температуры тела поддерживается путем совместного действия, с одной стороны, механизмов, регулирующих интенсивность обмена веществ и зависящее от него теплообразование (химическая регуляция тепла), а с другой - механизмов, регулирующих теплоотдачу (физическая регуляция тепла) (рис. 9.10).

Рис. 9.10.

Регуляция изотермии. Регуляторные реакции, обеспечивающие сохранение постоянства температуры тела, представляют собой сложные рефлекторные акты, которые возникают в ответ на температурное раздражение рецепторов кожи, кожных и подкожных сосудов, а также самой ЦНС. Эти рецепторы, воспринимающие холод и тепло, названы терморецепторами. При относительно постоянной температуре окружающей среды от рецепторов в ЦНС поступают ритмические импульсы, отражающие их тоническую активность. Частота этих импульсов максимальна для холодовых рецепторов кожи и кожных сосудов при температуре 20-30 °С, а для кожных тепловых рецепторов - при температуре 38-43 °С. При резком охлаждении кожи частота импульсации в холодовых рецепторах возрастает, а при быстром согревании становится меньше или прекращается. На такие же перепады температуры тепловые рецепторы реагируют прямо противоположно. Тепловые и холодовые рецепторы ЦНС реагируют на изменение температуры крови, притекающей к нервным центрам (центральные терморецепторы). Основная часть тепла вырабатывается скелетными мышцами и внутренними органами, которые образуют ядро, а кожа создает оболочку, направленную на сохранение или удаление тепла из организма (рис. 9.11).

Рис. 9.11.

В гипоталамусе расположены основные центры терморегуляции, которые координируют многочисленные и сложные процессы, обеспечивающие сохранение температуры тела на постоянном уровне. Это доказывается тем, что разрушение гипоталамуса влечет за собой потерю способности регулировать температуру тела и делает животное пойкилотермным, в то время как удаление коры большого мозга, полосатого тела и зрительных бугров заметно не отражается на процессах теплообразования и теплоотдачи.

В осуществлении гипоталамической регуляции температуры тела участвуют железы внутренней секреции, главным образом щитовидная и надпочечники.

Участие щитовидной железы в терморегуляции доказывается тем, что введение в кровь животного сыворотки крови другого животного, которое длительное время находилось на холоде, вызывает у первого повышение обмена веществ. Такой эффект наблюдается лишь при сохранении у второго животного щитовидной железы. Очевидно, во время пребывания в условиях охлаждения происходит усиленное выделение в кровь гормона щитовидной железы, повышающего обмен веществ и, следовательно, образование тепла.

Участие надпочечников в терморегуляции обусловлено выделением ими в кровь адреналина, который, усиливая окислительные процессы в тканях, в частности в мышцах, повышает теплообразование и суживает кожные сосуды, уменьшая теплоотдачу. Поэтому адреналин способен вызывать повышение температуры тела (адреналиновая гипертермия).

Гипотермия и гипертермия. Если человек длительное время находится в условиях значительно повышенной или пониженной температуры окружающей среды, то механизмы физической и химической терморегуляции тепла, благодаря которым в обычных условиях сохраняется постоянство температуры тела, могут оказаться недостаточными: происходит переохлаждение тела - гипотермия или перегревание - гипертермия.

Гипотермия - состояние, при котором температура тела опускается ниже 35 °С. Быстрее всего гипотермия наступает при погружении в холодную воду. В этом случае вначале наблюдается возбуждение симпатической нервной системы, рефлекторно ограничивается теплоотдача и усиливается теплопродукция. Последней способствует сокращение мышц - мышечная дрожь. Через некоторое время температура тела все же начинает снижаться. При этом наблюдается состояние, подобное наркозу: исчезновение чувствительности, ослабление рефлекторных реакций, понижение возбудимости нервных центров. Резко понижается интенсивность обмена веществ, замедляется дыхание, урежаются сердечные сокращения, снижается сердечный выброс, понижается АД (при температуре тела 24-25 °С оно может составлять 15-20% от исходного).

В последние годы искусственно создаваемая гипотермия с охлаждением тела до 24-28 °С применяется в хирургических клиниках, осуществляющих операции на сердце и ЦНС. Смысл этого мероприятия состоит в том, что гипотермия значительно снижает обмен веществ головного мозга и, следовательно, потребность этого органа в кислороде. В результате становится возможным более длительное обескровливание мозга (вместо 3-5 мин при нормальной температуре до 15-20 мин при 25-28 °С), а это означает, что при гипотермии больные легче переносят временное выключение сердечной деятельности и остановку дыхания.

Криотерапия применяется и при некоторых других заболеваниях.

Гипертермия - состояние, при котором температура тела поднимается выше 37 °С. Она возникает при продолжительном действии высокой температуры окружающей среды, особенно при влажном воздухе и, следовательно, небольшом эффективном потоотделении. Гипертермия может возникать и под влиянием некоторых эндогенных факторов, усиливающих в организме теплообразование (тироксин, жирные кислоты и др.). Резкая гипертермия, при которой температура тела достигает 40-41 °С, сопровождается тяжелым общим состоянием организма и носит название теплового удара.

От гипертермии следует отличать такое изменение температуры, когда внешние условия не изменены, но нарушается собственно процесс терморегуляции. Примером такого нарушения может служить инфекционная лихорадка. Одной из причин ее возникновения является высокая чувствительность гипоталамических центров регуляции теплообмена к некоторым химическим соединениям, в частности к бактерийным токсинам.

Таким образом, баланс факторов, ответственных за теплопродукцию и теплоотдачу, является основным механизмом терморегуляции.

Вопросы и задания

  • 1. Какова роль белков в организме? В чем сущность регуляции белкового обмена?
  • 2. Какова роль углеводов в организме? В чем сущность регуляции углеводного обмена?
  • 3. Какова роль жиров в организме? В чем сущность регуляции жирового обмена?
  • 4. Какое значение имеют витамины в жизни человека?
  • 5. Значение физической и химической терморегуляции в организме. Ответ поясните.
  • 6. В последние годы искусственно создаваемая гипотермия с охлаждением тела до 24-28 °С применяется на практике в хирургических клиниках, осуществляющих операции на сердце и ЦНС. В чем смысл этого мероприятия?

Терморегуляция — это процесс, который обеспечивает способность организма поддерживать температуру тела на определенном уровне вне зависимости от температуры окружающей среды.

Терморегуляторный центр может возбуждаться как гуморально (температурой протекающей через него крови), так и рефлекторно (при раздражении теплом или холодом рецепторов кожи). Возбуждение терморегуляторного центра приводит в действие все теплорегуляторные ме-ханизмы: интенсивность окислительных процессов, тонус скелет-ных мышц, сосудодвигательные реакции, секрецию потовых желез, дыхательные движения. Интенсивность окислительных процессов может измениться либо через вегетативную нервную систему, либо путем изменения секреции гормонов щитовидной железы и мозговой части надпочечников. Изменение работы мышц , расши-рение или сужение сосудов, секреция пота, изменение дыхатель-ных движений происходит рефлекторно через сосудодвигательный, дыхательный и потоотделительные центры.

Кора головного мозга

Центр терморегуляции находится, в свою очередь, под контролем коры головного мозга . Если животное подвергается перегреванию в опре-деленной обстановке и у него происходят соответствующие регу-ляторные реакции, то через некоторое время одна только обста-новка (без перегревания) вызовет у него те же реакции, что и перегревание. Таким образом, здесь имеет место условнорефлектор-ная реакция, происходящая при участии коры больших полу-шарий.

Температурные границы жизни очень широки. Споры многих бакте-рий выдерживают нагревание до 150°, а некоторые из них не теряют жизнеспособности при температуре, близкой к абсолютному нулю. С другой сто-роны, в горячих ключах острова Искьи (Италия) при температуре около 85° живут некоторые инфузории. Здесь еще многое остается недостаточно изученным. Рыб, насекомых и даже млекопитающих можно замораживать и затем осторожно оттаивать. Например, карпов замораживали до 15° ниже нуля и снова, постепенно отгнивая, возвращали к жизни, но замораживание хотя бы на одни градус ниже 15 уже гибельно для животного. Однако из-вестно также, чти при замораживании спермиев в до температуры, близкой к минус 200°, и длительном хранении их при этой температуре значитель-ная их часть сохраняет нормальную жизнеспособность и оплодотворяющую силу.

На этой странице материал по темам:

Теплообмен

Теплота способна переходить только из области более высокой температуры в область более низкой. Поэтому поток тепловой энергии от живого организма в окружающую среду не прекращается до тех пор, пока температура тела выше, чем температура среды.

Температура тела определяется соотношением скорости метаболической теплопродукции клеточных структур и скорости рассеивания образующейся тепловой энергии в окружающую среду. Следовательно, теплообмен между организмом и средой является неотъемлемым условием существования теплокровных организмов. Нарушение соотношения этих процессов приводит к изменению температуры тела.

Жизнь может протекать в узком диапазоне температур.

Возможность протекания процессов жизнедеятельности ограничена узким диапазоном температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25°с и её увеличение выше 43°с, как правило, смертельно. Особенно чувствительны к изменениям температуры нервные клетки.

Ядро и внешняя оболочка тела

С точки зрения терморегуляции, тело человека можно представить состоящим из двух компонентов: внешней оболочки, и внутреннего, ядра. Ядро – это часть тела, которая имеет постоянную температуру, а оболочка – часть тела, в которой имеется температурный градиент. Через оболочку идёт теплообмен между ядром и окружающей средой.

Терморегуляция

Терморегуляция – это совокупность физиологических процессов, направленных на поддержание относительного постоянства температуры ядра в условиях изменения температуры среды с помощью регуляции теплопродукции и теплоотдачи. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если подобные нарушения уже произошли, и осуществляется нервно-гуморальным путём.

Виды терморегуляции

Терморегуляцию можно разделить на два основных вида:

Химическую и физическую терморегуляцию. Они, в свою очередь, также подразделяются на несколько видов:

  1. Химическая терморегуляция

    Сократительный термогенез
    - Несократительный термогенез

  2. Физическая терморегуляция

Излучение
-Теплопроведение (кондукция)
-Конвекция
-Испарение

Рассмотрим эти виды терморегуляции подробнее.

Химическая терморегуляция

Регулирование объёма теплопродукции

Химическая терморегуляция теплообразования – осуществляется за счёт изменения уровня обмена веществ, что приводит к изменению образования тепла в организме. Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиз АТФ.

При расщеплении питательных веществ часть освобождённой энергии аккумулируется в АТФ, часть рассеивается в виде тепла (первичная теплота – 65–70% энергии). При использовании макроэргических связей молекул АТФ часть энергии идёт на выполнение полезной работы, а часть рассеивается (вторичная теплота). Таким образом, два потока теплоты – первичной и вторичной – являются теплопродукцией.

При необходимости повысить теплопродукцию, помимо возможности получения тепла извне, в организме используются механизмы, увеличивающие производство тепловой энергии.

К таким механизмам относятся сократительный и несократительный термогенез.

Сократительный термогенез

Этот вид терморегуляции работает если нам холодно и необходимо поднять температуру тела. Заключается этот метод в сокращении мышц.

При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата, в основном, возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3–5 раз по сравнению с величиной основного обмена.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса (волосы на теле "встают дыбом", появляются "мурашки") . С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25–40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы головы и шеи.

При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь . Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция повышается. Считается, что теплопродукция при холодовой дрожи в 2,5 раз выше, чем при произвольной мышечной деятельности.

Описанный механизм работает на рефлекторном уровне, без участия нашего сознания. Но поднять температуру тела можно и при помощи сознательной двигательной активности.

При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5–15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15–30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

Несократительный термогенез

Этот вид терморегуляции может приводить, как повышению, так и к понижению температуры тела.

Он осуществляется путём ускорения или замедления катаболических процессов обмена веществ. А это, в свою очередь, будет приводить к снижению или увеличению теплопродукции. За счёт этого вида термогенеза теплопродукция может вырасти в 3 раза.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной и мозгового слоя надпочечников.

Физическая терморегуляция

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Различают несколько механизмов отдачи тепла в окружающую среду.

  1. Излучение
  2. – отдача тепла в виде электромагнитных волн инфракрасного диапазона. За счёт излучения отдают энергию все предметы, температура которых выше абсолютного нуля. Электромагнитная радиация свободно проходит сквозь вакуум, атмосферный воздух для неё тоже можно считать «прозрачным». Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тела, не покрытой одеждой) и градиенту температуры. При температуре окружающей среды 20°с и относительной влажности воздуха 40–60% организм взрослого человека рассеивает путём излучения около 40–50% всего отдаваемого тепла.
  3. Теплопроведение (кондукция)
  4. – способ отдачи тепла при непосредственном соприкосновении тела с другими физическими объектами. Количество тепла, отдаваемого в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади соприкасающихся поверхностей, времени теплового контакта и теплопроводности.
  5. Конвекция
  6. – теплоотдача, осуществляемая путём переноса тепла движущимися частицами воздуха (воды). Воздух, соприкасающийся с кожей, нагревается и поднимается, его место занимает «холодная» порция воздуха и т. д. В условиях температурного комфорта этим способом тело теряет до 15% всего отдаваемого тепла.
  7. Испарение – отдача тепловой энергии в окружающую среду за счёт испарения пота или влаги с поверхности кожи и слизистых дыхательных путей. За счёт испарения организм в условиях комфортной температуры отдаёт около 20% всего рассеиваемого тепла. Испарение делится на 2 вида.

Неощущаемая перспирация – испарение воды со слизистых дыхательных путей (через дыхание) и воды, просачивающейся через эпителий кожного покрова (Испарение с поверхности кожи. Оно идёт даже в случае, если кожа сухая.).

За сутки через дыхательные пути испаряется до 400 мл воды, т.е. организм теряет до 232 ккал в сутки. При необходимости эта величина может быть увеличена за счёт тепловой одышки.

Через эпидермис в среднем за сутки просачивается около 240 мл воды. Следовательно, этим путём организм теряет до 139 ккал в сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.

Ощущаемая перспирация – отдача тепла путём испарения пота . В среднем за сутки при комфортной температуре среды выделяется 400–500 мл пота, следовательно, отдаётся до 300 ккал энергии. Однако при необходимости объём потоотделения может увеличиться до 12 л в сутки, т.е. путём потоотделения можно потерять до 7000 ккал в сутки.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность, тем выше эффективность потоотделения как механизма отдачи тепла. При 100% влажности испарение невозможно.

Управление терморегуляцией

Гипоталамус

Система терморегуляции состоит из ряда элементов с взаимосвязанными функциями. Информация о температуре поступает от терморецепторов и при помощи нервной системы попадает в мозг.

Основную роль в терморегуляции играет гипоталамус. Разрушение его центров или нарушение нервных связей ведёт к утрате способности регулировать температуру тела. В переднем гипоталамусе расположены нейроны, управляющие процессами теплоотдачи. При разрушении нейронов переднего гипоталамуса организм плохо переносит высокие температуры, но физиологическая активность вусловиях холода сохраняется. Нейроны заднего гипоталамуса управляют процессами теплопродукции. При их повреждении нарушается способность к усилению энергообмена, поэтому организм плохо переносит холод.

Эндокринная система

Гипоталамус управляет процессами теплопродукции и теплоотдачи, посылая нервные импульсы к железам внутренней секреции, главным образом щитовидной и надпочечникам.

Участие щитовидной железы в терморегуляции обусловлено тем, что влияние пониженной температуры приводит к усиленному выделению её гормонов, ускоряющих обмен веществ и, следовательно, теплообразование.

Роль надпочечников связана с выделением ими в кровь катехоламинов, которые, усиливая или уменьшая окислительные процессы в тканях (например, мышечной), увеличивают или уменьшают теплопродукцию и сужают или увеличивают кожные сосуды, меняя уровень теплоотдачи.

А. Жизнь человека может протекать только в узком диапазоне температур.

Температура оказывает существенное влияние на протекание жизненных процессов в организме человека и на его физиологическую активность. Процессы жизнедеятельности ограничены узким диапазоном температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25°С и её увеличение выше 43°С, как правило, смертельно. Особенно чувствительны к изменениям температуры нервные клетки.

Высокая температура вызывает интенсивное потоотделение, что приводит к обезвоживанию организма, потере минеральных солей и водорастворимых витаминов. Следствием этих процессов является сгущение крови, нарушение солевого обмена, желудочной секреции, развитие витаминного дефицита. Допустимое снижение веса при испарении составляет 2-3%. При потере веса от испарения в 6% нарушается умственная деятельность, а при 15-20% потери веса наступает смерть. Систематическое действие высокой температуры вызывает изменения в сердечно-сосудистой системе: учащение пульса, изменение артериального давления, ослабление функциональной способности сердца. Длительное воздействие высокой температуры приводит к накоплению тепла в организме, при этом температура тела может повыситься до 38-41°С и может возникнуть тепловой удар с потерей сознания.

Низкие температуры могут быть причинами охлаждения и переохлаждения организма. При охлаждении в организме рефлекторно уменьшается теплоотдача и усиливается теплопродукция. Уменьшение теплоотдачи происходит за счёт спазма (сужения) сосудов, увеличения термического сопротивления тканей организма. Длительное воздействие низкой температуры приводит к стойкому сосудистому спазму, нарушению питания тканей. Рост теплопродукции при охлаждении достигается усилием окислительных обменных процессов в организме (понижение температуры тела на 1°С сопровождается приростом обменных процессов на 10°С). Воздействие низких температур сопровождается увеличением артериального давления, объёмом вдоха и уменьшением частоты дыхания. Охлаждение организма изменяет углеводный обмен. Большое охлаждение сопровождается снижением температуры тела, угнетением функций органов и систем организма.

Б. Ядро и внешняя оболочка тела.

С точки зрения терморегуляции тело человека можно представить состоящим из двух компонентов - внешней оболочки и внутреннего ядра .

Ядро - это часть тела, которая имеет постоянную температуру (внутренние органы), а оболочка - часть тела, в которой имеется температурный градиент (это ткани поверхностного слоя тела толщиной 2,5 см). Через оболочку идёт теплообмен между ядром и окружающей средой, то есть изменения теплопроводности оболочки определяют постоянство температуры ядра. Теплопроводность изменяется за счёт изменения кровоснабжения и кровенаполнения тканей оболочки.

Температура разных участков ядра различна. Например, в печени: 37.8-38.0°С, в мозге: 36.9-37.8°С. В целом же температура ядра тела человека составляет 37.0°С. Это достигается с помощью процессов эндогенной терморегуляции, результатом которой является устойчивое равновесие между количеством продуцируемого в организме в единицу времени тепла (теплопродукцией ) и количеством тепла, рассеиваемого организмом за то же время в окружающую среду (теплоотдачей ).

Температура кожи человека на различных участках колеблется от 24.4°С до 34.4°С. Самая низкая температура наблюдается на пальцах ног, самая высокая - в подмышечной впадине. Именно на основании измерения температуры в подмышечной впадине обычно судят о температуре тела в данный момент времени.

По усреднённым данным, средняя температура кожи обнажённого человека в условиях комфортной температуры воздуха составляет 33-34°С. Существуют суточные колебания температуры тела. Амплитуда колебаний может достигать 1°С. Температура тела минимальна в предутренние часы (3-4 часа) и максимальна в дневное время (16-18 часов).

Известно также явление асимметрии температуры. Она наблюдается примерно в 54% случаев, причём температура в левой подмышечной впадине несколько выше, чем в правой. Возможна асимметрия и на других участках кожи, а выраженность асимметрии более чем в 0,5°С свидетельствует о патологии.

В. Теплообмен. Баланс теплообразования и теплоотдачи в организме человека.

Процессы жизнедеятельности человека сопровождаются непрерывным теплообразованием в его организме и отдачей образованного тепла в окружающую среду. Обмен тепловой энергии между организмом и окружающей средой называетсяp теплообменом. Теплопродукция и теплоотдача обусловлены деятельностью центральной нервной системы, регулирующей обмен веществ, кровообращение, потоотделение и деятельность скелетных мышц.

Организм человека - это саморегулируемая система с внутренним источником тепла, в которой в нормальных условиях теплопродукция (количество образованного тепла) равна количеству тепла, отданного во внешнюю среду (теплоотдаче). Постоянство температуры тела называется изотермией . Она обеспечивает независимость обменных процессов в тканях и органах от колебаний температуры окружающей среды.

Внутренняя температура тела человека постоянна (36.5-37°С) благодаря регулированию интенсивности теплопродукции и теплоотдачи в зависимости от температуры внешней среды. А температура кожи человека при воздействии внешних условий может изменяться в относительно широких пределах.

В теле человека за 1 час образуется столько тепла, сколько нужно, чтобы вскипятить 1 литр ледяной воды. И если бы тело было непроницаемым для тепла футляром, то уже через час температура тела поднялась бы примерно на 1.5°С, а часов через 40 достигла бы точки кипения воды. Во время тяжёлой физической работы образование тепла увеличивается ещё в несколько раз. И всё же температура нашего тела не меняется. Почему? Всё дело именно в уравновешивании процессов образования и отдачи тепла в организме.

Ведущим фактором, определяющим уровень теплового баланса, является температура окружающей среды. При её отклонении от комфортной зоны в организме устанавливается новый уровень теплового баланса, обеспечивающий изотермию в новых условиях среды. Такое постоянство температуры тела обеспечивается механизмом терморегуляции , включающим процесс теплообразования и процесс тепловыделения, которые регулируются нервно-эндокринным путём.

Г. Понятие терморегуляции организма .

Терморегуляция - это совокупность физиологических процессов, направленных на поддержание относительного постоянства температуры ядра организма в условиях изменения температуры среды с помощью регуляции теплопродукции и теплоотдачи. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если подобные нарушения уже произошли, и осуществляется нервно-гуморальным путём.

Принято считать, что терморегуляция свойственна лишь гомойотермным животным (к ним относятся млекопитающие (в том числе человек), и птицы), организм которых обладает способностью поддерживать температуру внутренних областей тела на относительно постоянном и достаточно высоком уровне (около 37-38°С у млекопитающих и 40-42°С у птиц) независимо от изменений температуры окружающей среды.

Механизм терморегуляции можно представить в виде кибернетической самоуправляющей системы с обратными связями. Температурные колебания окружающего воздуха действуют на специальные рецепторные образования (терморецепторы ), чувствительные к изменению температуры. Терморецепторы передают в центры терморегуляции информацию о тепловом состоянии органа, в свою очередь, центры терморегуляции через нервные волокна, гормоны и другие биологически активные вещества изменяют уровень теплоотдачи и теплопродукции или участков тела (местная терморегуляция), или организма в целом. При выключении центров терморегуляции специальными химическими веществами организм утрачивает способность к поддержанию постоянства температуры. Эту особенность в последние годы используют в медицине для искусственного охлаждения организма во время сложных хирургических операций на сердце.

Кожные терморецепторы.

Подсчитано, что у человека имеется примерно 150.000 холодовых и 16.000 тепловых рецепторов, которые реагируют на изменения температуры внутренних органов. Терморецепторы располагаются в коже, во внутренних органах, дыхательных путях, скелетных мышцах и центральной нервной системе.

Терморецепторы кожи являются быстро адаптирующимися и реагируют не столько на саму температуру, сколько на её изменения. Максимальное число рецепторов находится в области головы и шеи, минимальное - на конечностях.

Холодовые рецепторы менее чувствительны и их порог чувствительности равен 0,012°С (при охлаждении). Порог чувствительности тепловых рецепторов выше и составляет 0,007°С. Вероятно, это связано с большей опасностью для организма именно перегревания.

Д. Виды терморегуляции.

Терморегуляцию можно разделить на два основных вида :

1. Физическая терморегуляция:

Испарение (потоотделение);

Излучение (радиация);

Конвекция.

2. Химическая терморегуляция.

Сократительный термогенез;

Несократительный термогенез.

Физическая терморегуляция (процесс, осуществляющий удаление тепла из организма) - обеспечивает сохранение постоянства температуры тела за счёт изменения отдачи тепла организмом путём проведения через кожу (кондукция и конвекция), лучеиспускания (радиация) и испарения воды. Отдача постоянно образующегося в организме тепла регулируется изменением теплопроводности кожи, подкожного жирового слоя и эпидермиса. Теплоотдача в значительной мере регулируется динамикой кровообращения в теплопроводящих и теплоизолирующих тканях. С повышением температуры окружающей среды в теплоотдаче начинает доминировать испарение.

Кондукция, конвекция и излучение являются пассивными путями теплоотдачи, основанными на законах физики. Они эффективны только при сохранении положительного температурного градиента. Чем меньше разница температуры между телом и окружающей средой, тем меньше тепла отдаётся. При одинаковых показателях или при высокой температуре окружающей среды упомянутые пути не только не эффективны, но при этом ещё происходит и нагрев тела. В этих условиях в организме срабатывает только один механизм отдачи тепла - потоотделение.

При низкой температуре окружающей среды (15°С и ниже) около 90% суточной теплоотдачи происходит за счёт теплопроведения и теплоизлучения. В этих условиях видимого потоотделения не происходит. При температуре воздуха 18-22°С теплоотдача за счёт теплопроводности и теплоизлучения уменьшается, но увеличивается потеря тепла организмом путём испарения влаги с поверхности кожи. При повышении температуры окружающей среды до 35°С теплоотдача с помощью радиации и конвекции становится невозможной, и температура тела поддерживается на постоянном уровне исключительно с помощью испарения воды с поверхности кожи и альвеол лёгких. При большой влажности воздуха, когда испарение воды затруднено, может возникнуть перегревание тела и развиться тепловой удар.

У человека в состоянии покоя при температуре воздуха около 20°С и суммарной теплоотдаче, равной 419 кДж (100 ккал) в час, с помощью радиации теряется 66%, испарения воды - 19%, конвекции - 15% от общей потери тепла организмом.

Химическая терморегуляция (процесс, обеспечивающий образование тепла в организме) - реализуется через обмен веществ и через теплопродукцию таких тканей как мышцы, а также печень, бурый жир, то есть путём изменения уровня теплообразования - за счёт усиления или ослабления интенсивности обмена веществ в клетках организма. При окислении органических веществ выделяется энергия. Часть энергии идёт на синтез АТФ (аденозинтрифосфат - это нуклеотид, играющий исключительно важную роль в обмене энергии и веществ в организме). Эта потенциальная энергия может быть использована организмом в дальнейшей его деятельности. Источником тепла в организме являются все ткани. Кровь, протекая через ткани, нагревается. Повышение температуры окружающей среды вызывает рефлекторное снижение обмена веществ, вследствие этого в организме уменьшается теплообразование. При понижении температуры окружающей среды рефлекторно увеличивается интенсивность метаболических процессов и усиливается теплообразование.

Включение химической терморегуляции происходит тогда, когда физическая терморегуляция оказывается недостаточной для поддержания постоянства температуры тела.

Рассмотрим эти виды терморегуляции.

Физическая терморегуляция:

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Существуют следующие пути отдачи тепла организмом в окружающую среду:

Испарение (потоотделение);

Излучение (радиация);

Теплопроведение (кондукция);

Конвекция.

Рассмотрим их подробнее:

1. Испарение (потоотделение):

Испарение (потоотделение) - это отдача тепловой энергии в окружающую среду за счёт испарения пота или влаги с поверхности кожи и слизистых оболочек дыхательных путей. У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путём испарения тепла, чем «неощутимая».

При температуре внешней среды около 20°С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0,58 ккал тепловой энергии, нетрудно подсчитать, что путём испарения организм взрослого человека отдаёт в этих условиях в окружающую среду около 20% всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500-2.000 г/ч.

Человек плохо переносит сравнительно невысокую температуру окружающей среды (32°С) при влажном воздухе. В совершенно сухом воздухе человек может находиться без заметного перегревания в течение 2-3 ч при температуре 50-55°С. Плохо переносится также непроницаемая для воздуха одежда (резиновая, плотная и т.п.), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насыщается парами и дальнейшее испарение пота прекращается.

У процесса теплоотдачи при помощи испарения, хотя оно является лишь одним из способов терморегуляции, есть одно исключительное достоинство - если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло другими методами терморегуляции (излучением, конвекцией и кондукцией), которые мы рассмотрим ниже. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остаётся меньше 100%. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путём испарения становится менее эффективной.

При испарении пота наше тело отдаёт свою энергию. Собственно, благодаря энергии нашего тела молекулы жидкости (т.е. пота) разрывают молекулярные связи и переходят из жидкого в газообразное состояние. Энергия тратится на разрыв связей, и, в результате, температура тела понижается. По такому же принципу работает холодильник. Он умудряется поддерживать внутри камеры температуру, гораздо более низкую, чем температура окружающей среды. Делает он это благодаря потребляемой электроэнергии. А мы это делаем, используя энергию, полученную от расщепления пищевых продуктов.

Снизить потери тепла от испарения может помочь контроль над подбором одежды. Одежду нужно подбирать исходя из погодных условий и текущей активности. Не ленитесь снимать лишнюю одежду, когда растут нагрузки. Вы будете меньше потеть. И не ленитесь снова её одеть, когда нагрузки прекращаются. Снимайте влаго- и ветрозащиту, если дождя с ветром нет, иначе одежда будет мокнуть изнутри, от вашего пота. А, контактируя с мокрой одеждой, мы теряем тепло ещё и теплопроводностью. Вода в 25 раз лучше воздуха проводит тепло. Значит, в мокрой одежде мы теряем тепло в 25 раз быстрее. Вот почему важно поддерживать одежду сухой.

Испарение делится на 2 вида:

а) Неощущаемая перспирация (без участия потовых желез) - это испарение воды с поверхности лёгких, слизистых оболочек дыхательных путей и воды, просачивающейся через эпителий кожного покрова (испарение с поверхности кожи идёт даже в случае, если кожа сухая).

За сутки через дыхательные пути испаряется до 400 мл воды, т.е. организм теряет до 232 ккал в сутки. При необходимости эта величина может быть увеличена за счёт тепловой одышки. Через эпидермис в среднем за сутки просачивается около 240 мл воды. Следовательно, этим путём организм теряет до 139 ккал в сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.

б) Ощущаемая перспирация (при активном участии потовых желез) - это отдача тепла путём испарения пота. В среднем за сутки при комфортной температуре среды выделяется 400-500 мл пота, следовательно, отдаётся до 300 ккал энергии. Испарение 1 л пота у человека с массой тела 75 кг может понизить температуру тела на 10°С. Однако при необходимости объём потоотделения может увеличиться до 12 л в сутки, т.е. путём потоотделения можно потерять до 7.000 ккал в сутки.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность, тем выше эффективность потоотделения как механизма отдачи тепла. При 100% влажности испарение невозможно. При высокой влажности атмосферного воздуха высокая температура переносится тяжелее, чем при низкой влажности. В насыщенном водяными парами воздухе (например, в бане) пот выделяется в большом количестве, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла: только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет эффективное потоотделение).

2. Излучение (радиация):

Излучение (радиация) - это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5-20 мкм). За счёт излучения отдают энергию все предметы, температура которых выше абсолютного нуля. Электромагнитная радиация свободно проходит сквозь вакуум, атмосферный воздух для неё тоже можно считать «прозрачным».

Как известно, любой предмет, который нагрет выше температуры окружающей среды, излучает тепло. Каждый чувствовал это сидя у костра. Костёр излучает тепло и нагревает предметы вокруг. При этом костер теряет своё тепло.

Тело человека начинает излучать тепло, как только температура окружающей среды опускается ниже, чем температура поверхности кожи. Чтоб предотвратить потери тепла излучением, нужно защитить открытые участки тела. Это делается с помощью одежды. Таким образом, мы создаём прослойку воздуха в одежде между кожей и окружающей средой. Температура этой прослойки будет равна температуре тела и потери тепла излучением уменьшатся. Почему потеря тепла не прекратится совсем? Потому что теперь нагретая одежда будет излучать тепло, теряя его. И, даже надев на себя ещё один слой одежды, вы не остановите излучение.

Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тела, не покрытой одеждой) и разности средних значений температур кожи и окружающей среды. При температуре окружающей среды 20°С и относительной влажности воздуха 40-60% организм взрослого человека рассеивает путём излучения около 40-50% всего отдаваемого тепла. Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается.

Теплоотдача путём излучения возрастает при понижении температуры окружающей среды и уменьшается при её повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при её понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), то отдача тепла излучением становится невозможной.

Снизить теплоотдачу организма излучением можно за счёт уменьшения площади поверхности излучения - изменением положения тела . Например, когда собаке или кошке холодно, они сворачиваются в клубок, уменьшая тем самым поверхность теплоотдачи; когда жарко, животные, наоборот, принимают положение, при котором поверхность теплоотдачи максимально возрастает. Этого способа физической терморегуляции не лишён и человек, «сворачиваясь в клубок» во время сна в холодном помещении.

3. Теплопроведение (кондукция):

Теплопроведение (кондукция) - это способ отдачи тепла, который имеет место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела.

Потери тепла теплопроводностью возникают тогда, когда происходит прямой контакт с холодным предметом. В этот момент наше тело отдаёт своё тепло. Скорость потери тепла сильно зависит от теплопроводности предмета, с которым мы соприкасаемся. Например, теплопроводность камня в 10 раз выше, чем древесины. Поэтому, сидя на камне, мы будем терять тепло гораздо быстрее. Вы, наверняка, замечали, что сидеть на камне как-то холоднее, чем на бревне.

Решение? Изолировать своё тело от холодных предметов с помощью плохих проводников тепла. Проще говоря, например, если вы путешествуете в горах, то устраиваясь на привал, садитесь на туристический коврик или свёрток одежды. На ночь обязательно подкладывайте под спальник туристический коврик, соответствующий погодным условиям. Или, в крайнем случае, толстый слой сухой травы или хвои. Земля хорошо проводит (а значит «отбирает») тепло и сильно охлаждается ночью. Зимой не берите металлические предметы голыми руками. Используйте перчатки. В сильные морозы от металлических предметов можно получить местное обморожение.

Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами (плохими проводниками тепла). Одежда уменьшает теплоотдачу. Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей. Теплоизолирующие свойства одежды тем выше, чем мельче ячеистость её структуры, содержащая воздух. Этим объясняются хорошие теплоизолирующие свойства шерстяной и меховой одежды, что даёт возможность организму человека уменьшить рассеяние тепла путём теплопроводности. Температура воздуха под одеждой достигает 30°С. И, наоборот, обнажённое тело теряет тепло, так как воздух на его поверхности всё время сменяется. Поэтому температура кожи обнажённых частей тела намного ниже, чем одетых.

Влажный, насыщенный водяными парами воздух характеризуется высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства.

4. Конвекция:

Конвекция - это способ теплоотдачи организма, осуществляемый путём переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20°С, а относительная влажность - 40-60%, тело взрослого человека рассеивает в окружающую среду путём теплопроведения и конвекции около 25-30% тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).

Суть процесса конвекции лежит в следующем - наше тело нагревает воздух вблизи кожи; нагретый воздух становиться легче холодного и поднимается вверх, а его замещает холодный воздух, который снова нагревается, становится легче и вытесняется следующей порцией холодного. Если нагретый воздух не захватить с помощью одежды, то этот процесс будет бесконечным. Фактически нас греет не одежда, а воздух, который она задерживает.

Когда дует ветер, ситуация ухудшается. Ветер несёт огромные порции ненагретого воздуха. Даже когда мы одеваем тёплый свитер, ветру ничего не стоит выгнать из него тёплый воздух. То же самое происходит, когда мы движемся. Наше тело «врезается» в воздух, и он течёт вокруг нас, действуя как ветер. Это тоже умножает потери тепла.

Какое решение? Надевать ветрозащитный слой: ветровку и непродуваемые штаны. Не забывать о защите шеи и головы. Из-за активного кровообращения мозга, шея и голова - это наиболее нагретые участки тела, поэтому потери тепла от них очень большие. Также, в холодную погоду нужно избегать продуваемых мест как во время движения, так и при выборе места для ночлега.

Химическая терморегуляция:

Химическая терморегуляция теплообразования осуществляется за счёт изменения уровня обмена веществ (окислительных процессов), вызванных микровибрацией мышц (колебаниями), что приводит к изменению образования тепла в организме.

Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиз АТФ (аденозинтрифосфат - это нуклеотид, который играет исключительно важную роль в обмене энергии и веществ в организме; в первую очередь это соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах). При расщеплении питательных веществ часть освобождённой энергии аккумулируется в АТФ, часть рассеивается в виде тепла (первичная теплота - 65-70% энергии). При использовании макроэргических связей молекул АТФ часть энергии идёт на выполнение полезной работы, а часть рассеивается (вторичная теплота). Таким образом, два потока теплоты - первичной и вторичной - являются теплопродукцией.

Химическая терморегуляция имеет важное значение для поддержания постоянства температуры тела как в нормальных условиях, так и при изменении температуры окружающей среды. У человека усиление теплообразования вследствие увеличения интенсивности обмена веществ отмечается, в частности, тогда, когда температура окружающей среды становится ниже оптимальной температуры, или зоны комфорта. Для человека в обычной лёгкой одежде эта зона находится в пределах 18-20°С, а для обнажённого равна 28°С.

Оптимальная температура во время пребывания в воде выше, чем на воздухе. Это обусловлено тем, что вода, обладающая высокой теплоёмкостью и теплопроводностью, охлаждает тело в 14 раз сильнее, чем воздух, поэтому в прохладной ванне обмен веществ повышается значительно больше, чем во время пребывания на воздухе при той же температуре.

Наиболее интенсивное теплообразование в организме происходит в мышцах. Даже если человек лежит неподвижно, но с напряжённой мускулатурой, интенсивность окислительных процессов, а вместе с тем и теплообразование, повышаются на 10%. Небольшая двигательная активность ведёт к увеличению теплообразования на 50-80%, а тяжёлая мышечная работа - на 400-500%.

В химической терморегуляции значительную роль играют также печень и почки. Температура крови печёночной вены выше температуры крови печёночной артерии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает.

При необходимости повысить теплопродукцию, помимо возможности получения тепла извне, в организме используются механизмы, увеличивающие производство тепловой энергии. К таким механизмам относятся сократительный и несократительный термогенез .

1. Сократительный термогенез.

Этот вид терморегуляции работает, если нам холодно и необходимо поднять температуру тела. Заключается этот метод в сокращении мышц . При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата, в основном, возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3-5 раз по сравнению с величиной основного обмена.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса (волосы на теле «встают дыбом», появляются «мурашки»). С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25-40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы шеи, головы, туловища и конечностей.

При более значительном переохлаждении терморегуляционный тонус переходит в особый вид мышечных сокращений - мышечную холодовую дрожь , при которой мышцы не совершают полезной работы и их сокращение направлено исключительно на выработку тепла.Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате чего значительно усиливаются обменные процессы организма, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечёт за собой повышение теплообразования. Дрожь начинается часто с мышц шеи, лица. Это объясняется тем, что, прежде всего, должна повыситься температура крови, которая течёт к головному мозгу. Считается, что теплопродукция при холодовой дрожи в 2-3 раза выше, чем при произвольной мышечной деятельности.

Описанный механизм работает на рефлекторном уровне, без участия нашего сознания. Но поднять температуру тела можно и при помощи сознательной двигательной активности . При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5-15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15-30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

2. Несократительный термогенез:

Этот вид терморегуляции может приводить как к повышению, так и к понижению температуры тела. Он осуществляется путём ускорения или замедления катаболических процессов обмена веществ (окисление жирных кислот). А это, в свою очередь, будет приводить к снижению или увеличению теплопродукции. За счёт этого вида термогенеза уровень теплопродукции у человека может вырасти в 3 раза по сравнению с уровнем основного обмена.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной и мозгового слоя надпочечников.

Е. Управление терморегуляцией.

Гипоталамус.

Система терморегуляции состоит из ряда элементов с взаимосвязанными функциями. Информация о температуре поступает от терморецепторов и при помощи нервной системы попадает в мозг.

Основную роль в терморегуляции играет гипоталамус . В нём расположены основные центры терморегуляции, которые координируют многочисленные и сложные процессы, обеспечивающие сохранение температуры тела на постоянном уровне.

Гипоталамус - это небольшая область в промежуточном мозге, включающая в себя большое число групп клеток (свыше 30 ядер), которые регулируют нейроэндокринную деятельность мозга и гомеостаз (способность сохранять постоянство своего внутреннего состояния) организма. Гипоталамус связан нервными путями практически со всеми отделами центральной нервной системы, включая кору, гиппокамп, миндалину, мозжечок, ствол мозга и спинной мозг. Вместе с гипофизом гипоталамус образует гипоталамо-гипофизарную систему, в которой гипоталамус управляет выделением гормонов гипофиза и является центральным связующим звеном между нервной и эндокринной системой. Он выделяет гормоны и нейропептиды, и регулирует такие функции как ощущение голода и жажды, терморегуляция организма, половое поведение, сон и бодрствование (циркадные ритмы). Исследования последних лет показывают, что гипоталамус играет важную роль и в регуляции высших функций, таких как память и эмоциональное состояние, и тем самым участвует в формировании различных аспектов поведения.

Разрушение центров гипоталамуса или нарушение нервных связей ведёт к утрате способности регулировать температуру тела.

В переднем гипоталамусе расположены нейроны, управляющие процессами теплоотдачи (они обеспечивают физическую терморегуляцию - сужение сосудов, потоотделение).При разрушении нейронов переднего гипоталамуса организм плохо переносит высокие температуры, но физиологическая активность в условиях холода сохраняется.

Нейроны заднего гипоталамуса управляют процессами теплообразования (они обеспечивают химическую терморегуляцию - усиление теплообразования, мышечную дрожь).При их повреждении нарушается способность к усилению энергообмена, поэтому организм плохо переносит холод.

Термочувствительные нервные клетки преоптической области гипоталамуса непосредственно «измеряют» температуру артериальной крови, протекающей через мозг, и обладают высокой чувствительностью к температурным изменениям (способны различать разницу температуры крови в 0,011°С). Отношение холодо- и теплочувствительных нейронов в гипоталамусе составляет 1:6, поэтому центральные терморецепторы преимущественно активируются при повышении температуры «ядра» тела человека.

На основе анализа и интеграции информации о значении температуры крови и периферических тканей, в преоптической области гипоталамуса непрерывно определяется среднее (интегральное) значение температуры тела. Эти данные передаются через вставочные нейроны в группу нейронов переднего отдела гипоталамуса, задающих в организме определённый уровень температуры тела - «установочную точку» терморегуляции. На основе анализа и сравнений значений средней температуры тела и заданной величины температуры, подлежащей регулированию, механизмы «установочной точки» через эффекторные нейроны заднего гипоталамуса воздействуют на процессы теплоотдачи или теплопродукции, чтобы привести в соответствие фактическую и заданную температуру.

Таким образом, за счёт функции центра терморегуляции устанавливается равновесие между теплопродукцией и теплоотдачей, позволяющее поддерживать температуру тела в оптимальных для жизнедеятельности организма пределах.

Эндокринная система.

Гипоталамус управляет процессами теплопродукции и теплоотдачи, посылая нервные импульсы к железам внутренней секреции, главным образом щитовидной, и надпочечникам.

Участие щитовидной железы в терморегуляции обусловлено тем, что влияние пониженной температуры приводит к усиленному выделению её гормонов (тироксин, трийодтиронин), ускоряющих обмен веществ и, следовательно, теплообразование.

Роль надпочечников связана с выделением ими в кровь катехоламинов (адреналин, норадреналин, дофамин), которые, усиливая или уменьшая окислительные процессы в тканях (например, мышечной), увеличивают или уменьшают теплопродукцию и сужают или увеличивают кожные сосуды, меняя уровень теплоотдачи.