Максимально допустимая погрешность измерения. Погрешности измерения. От чего зависит величина отклонения

Погрешность – это отклонение результата измерения от истинного значения измеряемой величины.

Истинное значение ФВ может быть установлено лишь путем проведения бесконечного числа измерений, что невозможно реализовать на практике. Истинное значение измеряемой величины является недостижимым, а для анализа погрешностей в качестве значения ближайшего к истинному, используют действительное значение измеряемой величины, значение получают с использованием самых совершенных методом измерений и самых высокоточных средств измерений. Таким образом, погрешность измерений представляет собой отклонение от действительного значения ∆=Xд – Хизм

Погрешность сопровождает все измерения и связана с несовершенством метода, средства измерения, условия измерения (когда они отличаются от н.у.).

В зависимости от принципов действия прибора те или иные факторы оказывают влияние.

Различают погрешности СИ и результата измерений за счет влияния внешних условий, особенностей измеряемой величины, несовершенства СИ.

Погрешность результата измерений включает в себя погрешность и средства измерений, также влияние условий проведения измерений, свойств объекта и измеряемой величины ∆ри=∆си+∆ву+∆св.о+∆сив.

Классификация погрешностей:

1) По способу выражения:

a) Абсолютная – погрешность, выраженная в единицах измеряемой величины ∆=Хд-Хизм

b) Относительная – погрешность, выраженная отношением абсолютной погрешности к результате измерений или действительному значению измеряемой величины γотн=(∆/Xд)* 100 .

c) Приведенная – это относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условию, принятому значению величины постоянному во всем диапазоне измерений (или части диапазона) γприв=(∆/Xнорм)*100, где Хнорм – нормирующее значение, установленное для приведенных значений. Выбор Хнорм производится в соответствии с ГОСТом 8.009-84. Это может быть верхний предел средства измерений, диапазон измерений, длина шкалы и т.л. Для множества средств измерений по приведенной погрешности устанавливают класс точности. Приведенная погрешность вводится потому что относительная характеризует погрешность только в данной точке шкалы и зависит от значения измеряемой величины.

2) По причинам и условиям возникновения:

a) Основная - это погрешность средств измерения, которое находятся в нормальных условиях эксплуатации, возникает из-за неидеальности функции преобразования и вообще неидеальности свойств средств измерений и отражает отличие действительной функции преобразования средств измерения в н.у. от номинальной нормированной документами на средства измерений (стандарты, тех. условия). Нормативными документами предусматриваются следующие н.у.:

  • Температура окружающей среды (20±5)°С;
  • Относительная влажность (65±15)%;
  • напряжение питания сети (220±4,4)В;
  • частота питания сети (50±1)Гц;
  • отсутствие эл. и магн. полей;
  • положение прибора горизонтальное, с отклонением ±2°.

Рабочие условия измерений – это условия, при которых значения влияющих величин находятся в пределах рабочих областей, для которых нормируют дополнительную погрешность или изменение показаний СИ.

Например, для конденсаторов нормируют дополнительную погрешность, связанную с отклонением температуры от нормальной; для амперметра отклонение частоты переменного тока 50 Гц.

b) Дополнительная – это составляющая погрешности средств измерений, возникающая дополнительно к основной, вследствие отклонения какой-либо из влияющих величин от нормы её значения или вследствие её выхода за пределы нормированной области значений. Обычно нормируется наибольшее значение дополнительной погрешности.

Предел допускаемой основной погрешности – наиб. основная погрешность средств измерения, при которой СИ может быть годным и допущено к применению по тех. условиям.

Предел допускаемой дополнительной погрешности – наибольшая дополнительная погрешность, при которой СИ допущено к применению.

Например, для прибора с КТ 1.0 приведенная дополнительная погрешность по температуре не должна превышать ±1% при изменении температуры на каждые 10°.

Пределы, допустимой основной и дополнительной погрешности могут быть выражены в форме абсолютной, относительной или приведенной погрешности.

Для того чтобы иметь возможность выбирать СИ путем сравнения их характеристик вводят обобщенную характеристику данного типа СИ – класс точности (КТ) . Обычно это предел допускаемых основной и дополнительной погрешностей. КТ позволяет судить в каких пределах находится погрешность СИ одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих СИ, т.к. погрешность зависит также от метода, условий измерений и т.д. Это нужно учитывать при выборе СИ в зависимости от заданной точности.

Значения КТ устанавливаются в стандартах или в технических условиях или других нормативных документах и выбираются в соответствии с ГОСТ 8.401-80 из стандартного ряда значений. Например, для электромеханических приборов: 0,05; 0,1; 0,2; 0,5; 1.0; 2,5; 4.0; 6.0.

Зная КТ СИ можно найти максимально допустимое значение абсолютной погрешности для всех точек диапазона измерений из формулы для приведенной погрешности: ∆maxдоп=(γприв*Xнорм)/100.

КТ обычно наносят на шкалу прибора в разных формах, например,(2.5) (в кружочке).

3) По характеру изменений:

a) систематические – составляющая погрешности, остающаяся постоянной или изменяющаяся по известной закономерности во все время проведения измерений. Может быть исключена из результатов измерения путем регулировки или введением поправок. К ним относят: методические П, инструментальные П, субъективные П и т д. Такое качество СИ, когда систематическая погрешность близка к нуля называют правильностью.

b) случайные – это составляющие погрешности, изменяющиеся случайным образом, причины нельзя точно указать, а значит, и устранить нельзя. Приводят к неоднозначности показаний. Уменьшение возможно при многократных измерениях и последующей статистической обработке результатов. Т.е. усредненный результат многократных измерений ближе к действительному значению, чем результат одного измерения. Качество, которое характеризуется близостью к нулю случайной составляющей погрешности называется сходимостью показаний этого прибора.

c) промахи – грубые погрешности, связанные с ошибками оператора или неучтенными внешними воздействиями. Их обычно исключают из результатов измерений, не учитывают при обработке результатов.

4) По зависимости от измеряемой величины:

a) Аддитивные погрешности (не зависит от измеряемой величины)

b) Мультипликативные погрешности (пропорционально значению измеряемой величины).

Мультипликативная погрешность по-другому называется погрешностью чувствительности.

Аддитивная погрешность обычно возникает из-за шумов, наводок, вибраций, трения в опорах. Пример: погрешность нуля и погрешность дискретности (квантования).

Мультипликативная погрешность вызывается погрешностью регулировки отдельных элементов измерительных приборов. Например, из-за старения (погрешность чувствительности СИ).

В зависимости от того, какая погрешность прибора является существенной, нормируют метрологические характеристики.

Если существенна аддитивная погрешность, то предел допустимой основной погрешности нормируют в виде приведенной погрешности.

Если существенна мультипликативная погрешность, то предел допустимой основной погрешности определяют по формуле относительной погрешности.

Тогда относительная суммарная погрешность: γотн=Δ/Х= γадд + γмульт= γадд+ γмульт+ γадд*Xнорм/Х– γадд=±, где с= γадд+ γмульт; d= γадд.

Это способ нормирования метрологических характеристик когда аддитивная и мультипликативная составляющие погрешности соизмеримы, т.е. предел относительной допустимой основной погрешности выражается в двучленной формуле соответственно и обозначение КТ состоит из двух чисел, выражающих c и d в %, разделенных косой чертой. Например, 0.02/0,01. Это удобно, т.к. число с – это относит.погрешность СИ в н.у. Второй член формулы характеризует увеличение относительной погрешности измерения при увеличении величины Х, т.е. характеризует влияние аддитивной составляющей погрешности.

5) В зависимости от влияния характера изменения измеряемой величины :

a) Статическая – погрешность СИ при измерении неизменной или медленно изменяющейся величины.

b) Динамическая – погрешность СИ, возникающая при измерении быстро меняющейся во времени ФВ. Динамическая погрешность является следствием инерционности прибора.

Погрешность измерения - отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.

Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного. Это отклонение принято называть ошибкой измерения . (В ряде источников, например в Большой советской энциклопедии , термины ошибка измерения и погрешность измерения используются как синонимы, но согласно рекомендации РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный, а РМГ 29-2013 его вообще не упоминает ). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов . На практике вместо истинного значения используют действительное значение величины х д , то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него . Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность . Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T = 2,8 ± 0,1 с означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с некоторой оговорённой вероятностью (см. доверительный интервал , доверительная вероятность , стандартная ошибка , предел погрешности).

Оценка погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

Δ x = x max − x min 2 . {\displaystyle \Delta x={\frac {x_{\max }-x_{\min }}{2}}.}

Классификация погрешностей

По форме представления

Абсолютная погрешность - Δ X {\displaystyle \Delta X} является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины (“meas” от “measured” - измеренное). Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины X meas {\displaystyle X_{\textrm {meas}}} может быть различной. Если X meas {\displaystyle X_{\textrm {meas}}} - измеренное значение, а X true {\displaystyle X_{\textrm {true}}} - истинное значение, то неравенство Δ X > | X meas − X true | {\displaystyle \Delta X>|X_{\textrm {meas}}-X_{\textrm {true}}|} должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина X meas {\displaystyle X_{\textrm {meas}}} распределена по нормальному закону , то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение . Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью :

  1. Явное указание погрешности. Например, m S = 100,02147 г с погрешностью u c = 0,35 мг.
  2. Запись в скобках погрешности последних цифр: m S = 100,02147(35) г. Для экспоненциальной записи в скобках указывается погрешность последних цифр мантиссы.
  3. Запись погрешности в скобках с абсолютным значением: m S = 100,02147(0,00035) г.
  4. Запись со знаком ± : 100,02147±0,00035 г. Такая запись рекомендуется стандартом JCGM 100:2008 в случае, если значение погрешности не относится к доверительному интервалу (т.е. если оценка строгая).

Запись со знаком ± зачастую может интерпретироваться как строгая, то есть, например что при 100 ± 5 значение гарантированно лежит в интервале от 95 до 105. Но научная запись подразумевает не это, а то, что величина скорее всего лежит в указанном интервале с некоторым стандартным отклонением .

Относительная погрешность измерения - отношение абсолютной погрешности измерения к опорному значению измеряемой величины, в качестве которого может выступать, в частности, её истинное или действительное значение: δ x = Δ x x true {\displaystyle \delta _{x}={\frac {\Delta x}{x_{\textrm {true}}}}} , δ x = Δ x x ¯ {\displaystyle \delta _{x}={\frac {\Delta x}{\bar {x}}}} .

Относительная погрешность является безразмерной величиной процентах .

Приведённая погрешность - это отношение максимально возможной абсолютной погрешности к нормирующему значению:

γ = Δ x max x N {\displaystyle \gamma ={\frac {\Delta x_{\textrm {max}}}{x_{\textrm {N}}}}}

Так же как и относительная, является безразмерной величиной ; её численное значение может указываться, например, в процентах .

По причине возникновения

  • Инструментальные / приборные погрешности - погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы , ненаглядностью прибора.
  • Теоретические - погрешности, возникающие из-за неверных теоретических предпосылок при измерениях.
  • Методические погрешности - погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности - погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определённой заранее заданной точностью - основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора. В различных областях науки и техники могут подразумеваться различные стандартные (нормальные) условия (например, США за нормальную температуру принимает 20 °C, а за нормальное давление - 101,325 кПа ); кроме того, для прибора могут быть определены специфические требования (например, нормальное рабочее положение). Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора - например, температурная (вызванная отклонением температуры окружающей среды от нормальной), установочная (обусловленная отклонением положения прибора от нормального рабочего положения), и т. п.

Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)×10 n , где показатель степени n = 1; 0; −1; −2 и т. д.

По характеру проявления

Случайная погрешность - составляющая погрешности измерения, изменяющаяся случайным образом в серии повторных измерений одной и той же величины, проведенных в одних и тех же условиях. В появлении таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения, однако их влияние обычно можно устранить статистической обработкой. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.

Математически случайную погрешность, как правило, можно представить белым шумом: как непрерывную случайную величину, симметричную относительно нуля, независимо реализующуюся в каждом измерении (некоррелированную по времени).

Основным свойством случайной погрешности является возможность уменьшения искажения искомой величины путём усреднения данных. Уточнение оценки искомой величины при увеличении количества измерений (повторных экспериментов) означает, что среднее случайной погрешности при увеличении объёма данных стремится к 0 (закон больших чисел).

Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. По этой причине часто полагают распределение случайной погрешности «нормальным» (см. Центральная предельная теорема ). «Нормальность» позволяет использовать в обработке данных весь арсенал математической статистики.

Однако априорная убежденность в «нормальности» на основании Центральной предельной теоремы не согласуется с практикой - законы распределения ошибок измерений весьма разнообразны и, как правило, сильно отличаются от нормального.

Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления).

Систематическая погрешность - погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.

Систематическую ошибку нельзя устранить повторными измерениями. Её устраняют либо с помощью поправок, либо «улучшением» эксперимента.

Прогрессирующая (дрейфовая ) погрешность - непредсказуемая погрешность, медленно меняющаяся во времени. Обусловлена она нарушениями статистической устойчивости .

Грубая погрешность (промах ) - погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).

Надо отметить, что деление погрешностей на случайные и систематические достаточно условно. Например, ошибка округления при определённых условиях может носить характер как случайной, так и систематической ошибки.

По способу измерения

Погрешность прямых измерений [ ] вычисляется по формуле

Δ x = (t) 2 + (A) 2 {\displaystyle \Delta x={\sqrt {(t)^{2}+(A)^{2}}}}

Погрешность косвенных воспроизводимых измерений - погрешность вычисляемой (не измеряемой непосредственно) величины. Если F = F (x 1 , x 2 . . . x n) {\displaystyle F=F(x_{1},x_{2}...x_{n})} , где - непосредственно измеряемые независимые величины, имеющие погрешность Δ x i {\displaystyle \Delta x_{i}} , то:

Δ F = ∑ i = 1 n (Δ x i ∂ F ∂ x i) 2 {\displaystyle \Delta F={\sqrt {\sum _{i=1}^{n}\left(\Delta x_{i}{\frac {\partial F}{\partial x_{i}}}\right)^{2}}}}

Погрешность косвенных невоспроизводимых измерений вычисляется аналогично вышеизложенной формуле, но вместо x i {\displaystyle x_{i}} ставится значение, полученное в процессе расчётов.

По зависимости от инерционности прибора

  • Статическая - погрешность системы измерения, возникающая при измерении неизменной во времени физической величины.
  • Динамическая - погрешность системы измерения, возникающая при измерении переменной физической величины, обусловленная несоответствием реакции системы измерения на скорость изменения измеряемой физической величины.

Измерение - это комплекс операций, целью которых является определить величину некоторого значения. Результат измерения - это три параметра: число, единицы и неопределённость. Результат измерения записывается так: Y = (x±u)[M], например L = (7.4±0.2)м. Единица измерения - это относительная единица, которую мы используем в качестве физической величины. Число - это количество единиц измерения, которое содержит в себе измеряемый объект. И, наконец, неопределённость - это степень приближения измеренной величины к измеряемой.

Погрешность измерений

Любое измерение содержит два типа погрешностей: случайные и систематические. Случайные погрешности вызваны вероятностными событиями, которые имеют место в любом измерении. Случайные погрешности не имеют закономерности, поэтому при большом количестве измерений среднее значение случайной погрешности стремится к нулю. Систематические погрешности возникают при сколь угодно большом количестве измерений. Систематические погрешности могут быть уменьшены только если известна причина, например, неправильное использование инструмента.

Влияние косвенных факторов

Существуют факторы, которые косвенно влияют на результат измерения и не входят в состав измеряемой величины. Например, при измерении длины профиля, длина профиля зависит от температуры профиля, а результат измерения в косвенной форме зависит от температуры микрометра. В таком случае, в результате замера должна быть описана температура, при которой производился замер. Другой пример: при измерении длины профиля с помощью лазера на результат измерения косвенно влияют температура воздуха, атмосферное давление и влажность воздуха.

Таким образом, что бы результат измерения был репрезентативен, необходимо определить условия измерения: определить факторы, влияющие на измерение; выбрать соответствующие инструменты; определить измеряемый объект; использовать соответствующий режим работы. Такие условия измерений определяются нормами для того, что бы результаты измерений можно было воспроизвести и сравнить , такие условия называются нормальными условиями для измерения .

Корректирование результатов измерений

В некоторых случаях существует возможность корректирования результата измерения, когда невозможно соблюдение нормальных условий. Введение такой корректировки усложняет измерение и часто требует измерения других величин. Например, измерение длины профиля при температуре θ, отличной от нормальной, 20°C, может быть скорректировано следующей формулой: l" 20 = l" θ . Корректировка калибровки измерительного устройства при 20°C - C c . Таким образом, длина профиля определяется такой зависимостью: l 20 = f(l" θ ,α,θ,C c).

В общем виде, результат измерения будет выражен зависимостью от других измерений: y = f(x 1 ,x 2 ,...x N), где f может быть аналитической функцией, распределением вероятности или даже быть частично неизвестной функцией. Корректирование результатотв уменьшает неточность измерений, но таким способом невозможно уменьшить неточность измерений до нуля.

Метрологическая лаборатория

Лаборатория метрологии должна контролировать все косвенные факторы измерения. Условия зависят от типа и точности измерений. Так, лабораторией может считаться даже отдел измерений на производстве. Ниже будет рассказано об основных требованиях к метрологической лаборатории.

Расположение

Метрологическая лаборатория должна быть расположена максимально удалённо от других зданий, находится на самом низком этаже (лучше - в подвале) и обладать достаточной изоляцией от шума, перепада температур, вибраций и других источников раздражения.

Температура

В метрологической лаборатории должен соблюдаться температурный режим, который учитывает находящихся в лаборатории сотрудников. Необходимо наличие системы кондиционирования воздуха и отопления.

Влажность

Влажность должна поддерживаться минимально допустимой для работы - около 40%.

Чистота воздуха

В воздухе не должны присутствовать взвеси размером больше одного микрометра.

Освещение

Освещение должно производиться люминесцентными лампами холодного цвета, освещённость должна составлять от 800 до 1000 лк.

Неопределённость измерительного инструмента

Неопределённость может быть определена посредством сравнения результатов замеров с образцом или замером инструментом более высокой точности. В процессе калибровки инструмента выводится корректировочное значение и неопределённость.

Пример калибровки микрометра

Замерив образец заранее известной длины, мы получим значение корректировки, c. Таким образом, если длина, измеренная инструментом равна x 0 , фактическая длина будет равна x c = x 0 + c.

Произведём n c замеров образца и получим отклонение s c . Теперь, при любых замерах откалиброванным микрометром, значение неопределённости u будет равно: u = √(u 2 0 + s 2 c /n c + u 2 m /n), u m - отклонение полученное при n замерах.

Допуск

На производстве используют понятие допуск, устанавливая верхнее и нижнее значение, в пределах которых измеряемый объект не считается браком. Например, при производстве конденсаторов ёмкостью 100±5% мкФ устанавливается допуск 5%, это означает, что на этапе контроля качества при замере ёмкости конденсатора, конденсаторы ёмкостью более 105 мкФ и менее 95 мкФ считаются браком.

При контроле качества необходимо учитывать неопределённость измерительного инструмента, так, если неопределённость измерения ёмкости конденсатора составляет 2 мкФ, то результат измерения 95 мкФ может означать 93-97 мкФ. Для учёта неопределённости в результатах измерений необходимо расширить понятие допуска: в допуске должна быть учтена неопределённость измерительного прибора. Для этого необходимо задать доверительный интервал, т.е. процент деталей, который должен гарантированно соответствовать заданным параметрам.

Доверительный интервал строится по нормальному распределению: считается, что результат измерения соответствует нормальному распределению μ±kσ. Вероятность нахождения значения в пределах ku зависит от значения k: при k=1 68,3% измерений попадут в значение σ±u, при k=3 - 99,7%.

Модель измерения

В большинстве случаев, искомая величина Y не замеряется непосредственно, а определяется как функция некоторых измерений X 1 , X 2 , ... X n . Такая функция называется моделью измерений , при этом каждая величина X i также может являться моделью измерений.

Погрешность является одной из наиболее важных метрологических характеристик средства измерений (технического средства, предназначенного для измерений). Она соответствует разнице между показаниями средства измерений и истинным значением измеряемой величины. Чем меньше погрешность, тем более точным считается средство измерений, тем выше его качество. Наибольшее возможное значение погрешности для определенного типа средств измерений при определенных условиях (например, в заданном диапазоне значений измеряемой величины) называется пределом допускаемой погрешности. Обычно устанавливают пределы допускаемой погрешности , т.е. нижнюю и верхнюю границы интервала, за которые не должна выходить погрешность.

Как сами погрешности, так и их пределы, принято выражать в форме абсолютных, относительных или приведенных погрешностей. Конкретная форма выбирается в зависимости от характера изменения погрешностей в пределах диапазона измерений , а также от условий применения и назначения средств измерений. Абсолютную погрешность указывают в единицах измеряемой величины, а относительную и приведённую - обычно в процентах. Относительная погрешность может характеризовать качество средства измерения гораздо более точно, чем приведённая, о чем будет рассказано далее более подробно.

Связь между абсолютной (Δ), относительной (δ) и приведённой (γ) погрешностями определяется по формулам:

где X - значение измеряемой величины, X N - нормирующее значение, выраженное в тех же единицах, что и Δ. Критерии выбора нормирующего значения X N устанавливаются ГОСТ 8.401-80 в зависимости от свойств средства измерений, и обычно оно должно быть равно пределу измерений (X K), т.е.

Пределы допускаемых погрешностей рекомендуется выражать в форме приведённых в случае, если границы погрешностей можно полагать практически неизменными в пределах диапазона измерений (например, для стрелочных аналоговых вольтметров, когда границы погрешности определяются в зависимости от цены деления шкалы, независимо от значения измеряемого напряжения). В противном случае рекомендуется выражать пределы допускаемых погрешностей в форме относительных согласно ГОСТ 8.401-80.
Однако на практике выражение пределов допускаемых погрешностей в форме приведённых погрешностей ошибочно используется в случаях, когда границы погрешностей никак нельзя полагать неизменными в пределах диапазона измерений. Это либо вводит пользователей в заблуждение (когда они не понимают, что заданная таким образом в процентах погрешность считается вовсе не от измеряемой величины), либо существенно ограничивает область применения средства измерений, т.к. формально в этом случае погрешность по отношению к измеряемой величине возрастает, например, в десять раз, если измеряемая величина составляет 0,1 от предела измерений.
Выражение пределов допускаемых погрешностей в форме относительных погрешностей позволяет достаточно точно учесть реальную зависимость границ погрешностей от значения измеряемой величины при использовании формулы вида

δ = ±

где с и d - коэффициенты, d

При этом в точке X=X k пределы допускаемой относительной погрешности, рассчитанные по формуле (4), будут совпадать с пределами допускаемой приведенной погрешности

В точках X

Δ 1 =δ·X=·X

Δ 2 =γ·Х K = c·X k

Т.е. в большом диапазоне значений измеряемой величины может быть обеспечена гораздо более высокая точность измерений, если нормировать не пределы допускаемой приведённой погрешности по формуле (5), а пределы допускаемой относительной погрешности по формуле (4).

Это означает, например, что для измерительного преобразователя на основе АЦП с большой разрядностью и большим динамическим диапазоном сигнала выражение пределов погрешности в форме относительной адекватнее описывает реальные границы погрешности преобразователя, по сравнению с формой приведённой.

Использование терминологии

Данная терминология широко используется при описании метрологических характеристик различных Средств измерения, например, перечисленных ниже производства ООО "Л Кард":

Модуль АЦП/ЦАП
16/32 каналов, 16 бит, 2 МГц, USB, Ethernet

Выбор измерительных средств по допустимой

При выборе измерительных средств и методов контроля изделий учитывают совокупность метрологических, эксплуатационных и экономических показателей. К метрологическим показателям относятся: допустимая погрешность измерительного прибора-инструмента; цена деления шкалы; порог чувствительности; пределы измерения и др. К эксплуатационным и экономическим показате­лям относятся: стоимость и надежность измерительных средств; продолжительность работы (до ремонта); время, затрачиваемое на настройку и процесс измерения; масса, габаритные размеры и рабочая нагрузка.

3.6.3.1. Выбор измерительных средств для контроля размеров

На рис. 3.3 показаны кривые распределения размеров деталей (у тех) и погрешностей измерения (у мет) с центрами, совпадающими с границами допуска. В результате наложения кривых у мет и у тех происходит искажение кривой распределения у(s тех, s мет), появляются области вероятностей т и п, обусловливающие выход размера за границу допуска на величину с . Таким образом, чем точнее технологический процесс (меньше отношение IT/D мет), тем меньше неправильно принятых деталей по сравнению с неправильно забракованными.

Решающим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Допускаемые погрешности измерения d изм при приёмочном контроле на линейные размеры до 500 мм устанавливаются ГОСТом 8.051, которые составляют 35-20% от допуска на изготовление детали IT. По этому стандарту предусмотрены наибольшие допускаемые погрешности измерения, включающие погрешности от средств измерений, установочных мер, температурных деформаций, измерительного усилия, базирования детали. Допускаемая погрешность измерения d изм состоит из случайной и неучтённой систематической составляющих погрешности. При этом случайная составляющая погрешности принимается равной 2s и не должна превышать 0,6 от погрешности измерения d изм.

В ГОСТе 8.051 погрешность задана для однократного наблюдения. Случайная составляющая погрешности может быть значительно уменьшена за счёт многократных наблюдений, при которых она уменьшается в раз, где n - число наблюдений. При этом за действительный размер принимается среднеарифметическое из серии проведённых наблюдений.

При арбитражной перепроверке деталей погрешность измерения не должна превышать 30% предела погрешности, допускаемой при приёмке.

Значения допустимой погрешности измерения d изм на угловые размеры установлены по ГОСТу 8.050 - 73.

у тех
n
6s тех
c
c
IT
y мет
2D мет
2D мет
у(s тех; s мет)
n
m
m

можно допустить при измерении: они включают в себя случайные и неучтенные систематические погрешности измерения, все составляющие, зависящие от измерительных средств, установочных мер, температурных деформаций, базирования и т. д.

Случайная погрешность измерения не должна превышать 0,6 от допустимой погрешности измерения и принимается равной 2s, где s-значение среднего квадратического отклонения погрешности измерения.

При допусках, не соответствующих значениям, указанным в ГОСТе 8.051 – 81 и ГОСТе 8.050 - 73, допустимую погрешность выбирают по ближайшему меньшему значению допуска для соответствующего размера.

Влияние погрешностей измерения при приемочном контроле по линейным размерам оценивается параметрами:

т- часть измеренных деталей, имеющих размеры, выходящие за предельные размеры, принята в числе годных (неправильно принятые);

п - часть деталей, имеющих размеры, не превышающие предельных размеров, забракованы (неправильно забракованные);

с -вероятностная предельная величина выхода размера за предельные размеры у неправильно принятых деталей.

Значения параметров т, п, с при распределении контролируемых размеров по нормальному закону приведены на рис. 3.4, 3.5 и 3.6.

Рис. 3.4. График для определения параметра m

Для определения т с другой доверительной вероятностью необходимо сместить начало координат по оси ординат.

Кривые графиков (сплошные и пунктирные) соответствуют определенному значению относительной погрешности измерения, равной

где s - среднее квадратическое отклонение погрешности измерения;

IТ-допуск контролируемого размера.

При определении параметров т, п и с рекомендуется принимать

А мет(s) = 16 % для квалитетов 2-7, А мет(s) =12 % - для квалитетов 8, 9,

А мет(s) =10 % - для квалитетов 10 и грубее.


Параметры т, п и с приведены на графиках в зависимости от значения IT/s тех, где s тех - среднее квадратическое отклонение погрешности изготовления. Параметры m , n и с даны при симметричном расположении поля допуска относительно центра группирования контролируемых деталей. Для определяется m , n и с при совместном влиянии систематической и случайной погрешностей изготовления пользуются теми же графиками, но вместо значения IT/s тех принимается

для одной границы ,

а для другой - ,

где a Т - систематическая погрешность изготовления.

При определении параметров m и n для каждой границы берется половина получаемых значений.

Возможные предельные значения параметров т, п и с /IТ, соответствующие экстремальным значениям кривых (на рис. 3.4 – 3.6), приведены в табл.3.5.

Таблица 3.5

A мет (s) m n c /IT A мет (s) m n c /IT
1,60 0,37-0,39 0,70-0,75 0,01 10,0 3,10-3,50 4,50-4,75 0,14
3,0 0,87-0,90 1,20-1,30 0,03 12,0 3,75-4,11 5,40-5,80 0,17
5,0 1,60-1,70 2,00-2,25 0,06 16,0 5,00-5,40 7,80-8,25 0,25
8,0 2,60-2,80 3,40-3,70 0,10

Первые значения т и п соответствуют распределению погрешностей измерения по нормальному закону, вторые-по закону равной вероятности.

Предельные значения параметров т, п и с /IТ учитывают влияние только случайной составляющей погрешности измерения.

ГОСТ 8.051-81 предусматривает два способа установления приемочных границ.

Первый способ . Приемочные границы устанавливают совпадающими с предельными размерами (рис. 3.7, а ).

Пример. При проектировании вала диаметром 100 мм оценено, что отклонения его размеров для условий эксплуатации должны соответствовать h6(100- 0,022). В соответствии с ГОСТом 8.051 - 81 устанавливают, что для размера вала 100 мм и допуска IТ=0,022 мм допускаемая погрешность измерения d изм = 0,006 мм.

В соответствии с табл. 3.5 устанавливают, что для A мет (s) = 16% и неизвестной точности технологического процесса m = 5,0 и с = 0,25IТ, т. е. среди годных деталей может оказаться до 5,0 % неправильно принятых деталей с предельными отклонениями +0,0055 и -0,0275 мм.

+d изм
-d изм
+d изм
-d изм
+d изм
-d изм
+d изм
-d изм
+d изм
-d изм
+d изм
-d изм
d изм /2 с