Системы уравнений с параметром

Рассмотрим теперь квадратное уравнение

где - неизвестная величина, - параметры (коэффициенты) уравнения.

К критическим значениям параметра следует отнести, прежде всего, значение При указанном значении параметра уравнение (1) принимает вид

следовательно, порядок уравнения понижается на единицу. Уравнение (2) является линейным уравнением и метод его решения рассматривался ранее.

При другие критические значения параметров определяются дискриминантом уравнения. Известно, что при уравнение (1) корней не имеет; при оно имеет единственный корень при уравнение (1) имеет два различных корня и

1). Найти все значения параметра для которых квадратное уравнение

а) имеет два различных корня;

б) не имеет корней;

в) имеет два равных корня.

Решение. Данное уравнение по условию является квадратным, а поэтому Рассмотрим дискриминант данного уравнения

При уравнение имеет два различных корня, т.к.

При уравнение корней не имеет, т.к. Данное квадратное уравнение не может иметь двух равных корней, т.к. при а это противоречит условию задачи.

Ответ: При уравнение имеет два различных корня.

При уравнение корней не имеет.

2).Решить уравнение. Для каждого допустимого значения параметра решить уравнение

Решение. Рассмотрим сначала случай, когда

(в этом случае исходное уравнение становится линейным уравнением). Таким образом, значение параметра и являются его критическими значениями. Ясно, что при корнем данного уравнения является а при его корнем является

Если т.е. и то данное уравнение является квадратным. Найдем его дискриминант:

При всех значениях дискриминант принимает неотрицательные значения, причем он обращается в нуль при (эти значения параметра тоже являются его критическими значениями).

Поэтому, если то данное уравнение имеет единственный корень

При этом значению параметра соответствует корень

а значению соответствует корень

Если же то уравнение имеет два различных корня. Найдем эти корни.



Ответ. Если то если то если то

если то , .

3).Решить уравнение. При каких значениях параметра а уравнение имеет единственное решение?

Решение. Данное уравнение равносильно системе

Наличие квадратного уравнения и условие единственности решения, естественно, приведут к поиску корней дискриминанта. Вместе с тем условие х ≠ -3 должно привлечь внимание. И «тонкий момент» заключается в том, что квадратное уравнение системы может иметь два корня! Но обязательно только один из них должен равняться -3. Имеем

D = а 2 - 4 , отсюда D =0, если а = ±2; х = -3 - корень уравнения х 2 – а х +1 = 0 при

а = -10/3, причем при таком значении а второй корень квадратного уравнения отличен

Ответ. а = ±2 или а = -10/3.

4).Решить уравнение. При каких значениях параметра а уравнение

(а - 2)x 2 + (4 - 2а ) х +3 = 0 имеет единственное решение?

Решение. Понятно, что надо начинать со случая а = 2. Но при а = 2 исходное уравнение вообще не имеет решений. Если а ≠ 2 , то данное уравнение - квадратное, и, казалось бы, искомые значения параметра - это корни дискриминанта. Однако дискриминант обращается в нуль при а = 2 или а = 5 . Поскольку мы установили, что а= 2 не подходит, то

Ответ , а = 5.

9).Решить уравнение. При каких значениях параметра а уравнение ах 2 - 4х + а + 3 = 0 имеет более одного корня?

Решение . При а = 0 уравнение имеет единственный корень, что не удовлетворяет условию. При а ≠ 0 исходное уравнение, будучи квадратным, имеет два корня, если его дискриминант 16 – 4а 2 – 12а положительный. Отсюда получаем -4 <а <1.

Однако в полученный промежуток (-4; 1) входит число 0.Ответ. -4<а <0 или 0<а <1.

10). При каких значениях параметра а уравнение а (а +3)х 2 + (2а +6)х – 3а – 9 = 0 имеет более одного корня?

Решение . Стандартный шаг - начать со случаев а = 0 и а = -3. При а = 0 уравнение имеет единственное решение. Любопытно, что при а = -3 решением уравнения служит любое действительное число. При а ≠ -3 и а ≠ 0, разделив обе части данного уравнения на а + 3, получим квадратное уравнение ах 2 + 2х - 3 = 0, дискриминант которого 4 (1 + За ) положителен при а > ⅓. Опыт предыдущих примеров подсказывает, что из промежутка

(-⅓ ;∞) надо исключить точку а = 0, а в ответ не забыть включить а = -3.

Ответ. а = -3, или - ⅓ < а < 0, или а > 0.

11).Решить уравнение :

Решение. Сначала заметим, что при данное уравнение равносильно уравнению которое не имеет решений. Если же

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О , то первый модуль раскрывается с минусом, а второй с плюсом и получаем неравенство –2x < 2a , т.е. x > –a , т.е., решением является любой x Є (–a ; a ]. Если x > a оба модуля раскрываются с плюсом и получаем верное неравенство –2a < 2a , т.е. , решением является любой x Є (a ; +∞). Объединяя оба ответа, получим, что при a > 0 x Є (–a ; +∞).

Пусть a < 0, тогда первое слагаемое больше, чем второе, поэтому разность в левой части неравенства положительна и, следовательно, не может быть меньше отрицательного числа 2a . Т.о., при a < 0 решений нет.

Ответ: x Є (–a ; +∞) при a > 0, решений нет при
.

Замечание. Решение данной задачи получается быстрее и проще, если использовать геометрическую интерпретацию модуля разности двух чисел, как расстояние между точками. Тогда выражение в левой части можно интерпретировать, как разность расстояний от точки х до точек а и –а .

Пример 3. Найти все а , при каждом из которых все решения неравенства
удовлетворяют неравенству 2x a ² + 5 < 0.

Решение:

Решением неравенства |x | ≤ 2 является множество A =[–2; 2], а решением неравенства 2x a ² + 5 < 0 является множество B = (–∞;
) . Чтобы удовлетворить условию задачи, нужно, чтобы множество А входило в множество В (). Это условие выполнится тогда и только тогда, когда .

Ответ: a Є (–∞; –3)U (3; +∞).

Пример 4. Найти все значения a , при которых неравенство
выполняется для всех x из отрезка .

Решение:

Дробь – меньше нуля между корнями, поэтому надо выяснить, какой корень больше.

–3a + 2 < 2a + 4
и –3a + 2 > 2a + 4
. Т.о., при
x Є (–3a + 2; 2a + 4) и чтобы неравенство выполнялось для всех x из отрезка , нужно, чтобы

При
x Є (2a + 4; –3a + 2) и чтобы неравенство выполнялось для всех x из отрезка , нужно, чтобы

При a = – (когда корни совпадают) решений нет, т.к. в этом случае неравенство приобретает вид: .

Ответ:
.

Пример 5. а неравенство справедливо при всех отрицательных значениях х ?

Решение:

Функция монотонно возрастает, если коэффициент при x неотрицательный, и она монотонно убывает, если коэффициент при x отрицательный.

Выясним знак коэффициента при

a ≤ –3,

a ≥ 1; (a ² + 2 a – 3) < 0 <=> –3 < a < 1.

a ≤ –3,

Пусть a ≥ 1. Тогда функция f (x ) монотонно не убывает, и условие задачи будет выполнено, если f (x ) ≤ 0 <=> 3a ² – a – 14 ≤ 0 <=>
.

a ≤ –3,

Вместе с условиями a ≥ 1; получим:

Пусть –3 < a < 1. Тогда функция f (x ) монотонно убывает, и условие задачи никогда не может быть выполнено.

Ответ :
.

2. Квадратные уравнения и неравенства с параметрами

Квадратичная функция:
.

В множестве действительных чисел это уравнение исследуется по следующей схеме.

Пример 1 . При каких значениях a уравнение x ² – ax + 1 = 0 не имеет действительных корней?

Решение:

x ² – ax + 1 = 0

D = a ² – 4 · 1 = a ² – 4


a ² – 4 < 0 + – +

( a – 2)( a + 2) < 0 –2 2

Ответ : при a Є (–2; 2)

Пример 2. При каких значениях а уравнение а (х ² – х + 1) = 3 х + 5 имеет два различных действительных корня?

Решение:

а (х ² – х + 1) = 3 х + 5, а ≠ 0

ах ² – ах+ а – 3 х – 5 = 0

ах ² – ( а + 3) х + а – 5 = 0

D = ( a +3)² – 4 a ( a – 5) = a ² +6 a + 9 – 4 a ² + 20 a = –3 a ² + 26 a + 9

3 a ² + 26 a + 9 > 0

3 a ² – 26 a – 9 < 0

D = 26² – 4 · 3 · (–9) = 784

a 1 =
; a 2 =
+ – +

0 9

Ответ: при a Є (–1/3; 0) U (0; 9)

Пример 3. Решить уравнение
.

Решение:



ОДЗ : x ≠1, x a

x – 1 + x a = 2, 2 x = 3 + a ,

1)
; 3 + a ≠ 2; a ≠ –1

2)
; 3 +
a ≠ 2 a ; a ≠ 3

Ответ:
при a Є (–∞; –1) U (–1; 3) U (3; +∞);

решений нет при a = –1; 3 .

Пример 4 . Решить уравнение | x ²–2 x –3 | = a .

Решение:

Рассмотрим функции y = | x ²–2 x –3 | и y = a .

При a < 0 нет решений;
при a = 0 и a > 4 два решения;
при 0 < a < 4 – четыре решения;
при a = 4 – три решения.

Ответ:

при a < 0 нет решений;
при a = 0 и a > 4 два решения;
при 0 < a < 4 – четыре решения;
при a = 4 – три решения.

Пример 5. Найти все значения a , при каждом из которых уравнение | x ²–( a +2) x +2 a | = | 3 x –6 |
имеет ровно два корня. Если таких значений a больше одного, в ответе укажите их произведение.

Решение:

Разложим квадратный трехчлен x ²–( a +2) x +2 a на множители.
;
;
;

Получим | ( x –2)( x a ) | = 3 | x –2 |.
Это уравнение равносильно совокупности

Поэтому данное уравнение имеет ровно два корня, если a + 3 = 2 и a – 3 = 2.
Отсюда находим, что искомыми значениями a являются a 1 = –1; a 2 = 5; a 1 · a 2 = –5.

Ответ: –5.

Пример 6. Найти все значения a , при которых корни уравнения ax ² – 2( a + 1) x a + 5 = 0 положительны .

Решение:

Контрольная точка a = 0, т.к. меняет суть уравнения.

1. a = 0 –2x + = 0;

Ответ: a Є U .

Пример 7. При каких значениях параметра a уравнение | x ² – 4 x + 3 | = ax имеет 3 корня.

Решение:

Построим графики функций y = | x ² – 4 x + 3 | и y = ax .

На отрезке построен график функции
.
Данное уравнение будет иметь три корня, если график функции y = ax будет являться касательной к графику y = x ²+ 4 x – 3 на
отрезке .

Уравнение касательной имеет вид y = f (x 0 ) + f ’(x 0 )(x x 0 ),



Т.к. уравнение касательной y = a , получим систему уравнений

Т.к. x 0 Є ,

Ответ: при a = 4 – 2
.

Квадратные неравенства с параметрами

Пример. Найдите все значения параметра a , при каждом из которых среди решений неравенства
нет ни одной точки отрезка .

Решение:

Сначала решим неравенство при всех значениях параметра, а потом найдем те из них, для которых среди решений нет ни одной точки отрезка .
Пусть
, ax = t ²

t ≥ 0

При такой замене переменных ОДЗ неравенства выполняется автоматически. x можно выразить через t , если a ≠ 0. Поэтому случай, когда a = 0, рассмотрим отдельно.
1.Пусть a = 0, тогда х > 0, и заданный отрезок является решением.
2.Пусть a ≠ 0, тогда
и неравенство
примет вид
,

Решение неравенства зависит от значений a , поэтому придется рассмотреть два случая.
1) Если a >0, то
при
, или в старых переменных,

Решение не содержит ни одной точки заданного отрезка , тогда и только тогда, когда выполнены условия a ≤ 7,

16a ≥ 96. Отсюда, a Є .
2). Если а < 0, то
;
; t Є (4a ; a ). Так как t ≥ 0, то решений нет.

Ответ: .

    Иррациональные уравнения с параметрами

При решении иррациональных уравнений и неравенств с параметром, во-первых, следует учитывать область допустимых значений. Во-вторых, если обе части неравенства – неотрицательные выражения, то такое неравенство можно возводить в квадрат с сохранением знака неравенства.
Во многих случаях иррациональные уравнения и неравенства после замены переменных сводятся к квадратным.

Пример 1. Решить уравнение
.

Решение:

ОДЗ: x + 1 ≥ 0, x ≥ –1, a ≥ 0.

x + 1 = a ².

Если x = a ² – 1, то условие выполняется.

Ответ: x = a ² – 1 при а ≥ 0; решений нет при a < 0.

Пример 2. Решить уравнение
.

Решение:

ОДЗ: x + 3 ≥ 0, x ≥ –3,

a – x ≥ 0; x a ;

x + 3 = a – x ,

2x = a – 3,

<=>
<=>
<=> a ≥ –3.

Ответ:
при a ≥ –3; решений нет при a < –3.

Пример 3. Сколько корней имеет уравнение
в зависимости от значений параметра а ?

Решение:

Область допустимых значений уравнения: x Є [–2; 2]

Построим графики функций. График первой функции – это верхняя половина окружности x ² + y ² = 4. График второй функции – биссектрисы первого и второго координатных углов. Из графика первой функции вычтем график второй и получим график функции
. Если заменить у на а , то последний график функции есть множество точек (х; а), удовлетворяющих исходному уравнению.

По графику видим ответ.

Ответ: при а Є (–∞; –2) U (1; +∞), корней нет;

при а Є [–2; 2), два корня;

при а = 1, один корень.

Пример 4. При каких значениях параметра а уравнение
имеет единственное решение?

Решение:

1 способ (аналитический):

Ответ:

2 способ (графический):

Ответ: при а ≥ –2 уравнение имеет единственное решение

Пример 5. При каких значениях параметра а уравнение = 2 + х имеет единственное решение.

Решение:

Рассмотрим графический вариант решения данного уравнения, то есть построим две функции:
у 1 = 2 + х и у 2 =

Первая функция является линейной и проходит через точки (0; 2) и (–2; 0).
График второй функции содержит параметр. Рассмотрим сначала график этой функции при а = 0 (рис.1). При изменении значения параметра график будет передвигаться по оси ОХ на соответсвующее значение влево (при положительных а ) или вправо (при отрицательных а ) (рис.2)



Из рисунка видно, что при а < –2 графики не пересекают друг друга, а следовательно не имеют общих решений. Если же значение параметра а больше либо равно –2, то графики имеют одну точку пересечения, а следовательно одно решение.

Ответ: при a ≥ –2 уравнение имеет единственное решение.

    Тригонометрические уравнения с параметрами.

Пример 1. Решите уравнение sin (– x + 2 x – 1) = b + 1.

Решение:


Учитывая нечетность функции
, данное уравнение сведем к равносильному
.

1. b = –1

3. b =–2

4. | b + 1| > 1

Решений нет.

5. b Є(–1; 0)

6. b Є(–2; –1)

Пример 2. Найдите все значения параметра p, при которых уравнение
не имеет решений.

Решение:

Выразим cos 2x через sinx .

Пусть
тогда задача свелась к нахождению всех значений p , при которых уравнение не имеет решений на [–1; 1]. Уравнение алгоритмически не решается, поэтому решим задачу, используя график. Запишем уравнение в виде , и теперь эскиз графика левой части
строится несложно.
Уравнение не имеет решений, если прямая y = p + 9 не пересекает график на отрезке [–1; 1], т. е.

Ответ: p Є (–∞; –9) U (17; +∞).

Системы уравнений с параметрами

    Системы двух линейных уравнений с параметрами

Система уравнений

Решениями системы двух линейных уравненийявляются точки пересечения двух прямых: и .

Возможны 3 случая:

1. Прямые не параллельны . Тогда и их нормальные вектора не параллельны, т.е. . В этом случае система имеет единственное решение.

2. Прямые параллельны и не совпадают. Тогда и их нормальные вектора параллельны, но сдвиги различны, т.е. .

В этом случае система решений не имеет .

3. Прямые совпадают. Тогда их нормальные вектора параллельны и сдвиги совпадают, т.е. . В этом случае система имеет бесконечно много решений – все точки прямой.