Образование и роль в организме атф. Что такое АТФ в биологии? Строение аденозинтрифосфорной кислоты

Важнейшим веществом в клетках живых организмов является аденозинтрифосфорная кислота или аденозинтрифосфат. Если ввести аббревиатуру этого названия, то получим АТФ (англ. ATP). Это вещество относится к группе нуклеозидтрифосфатов и играет ведущую роль в процессах метаболизма в живых клетках, являясь для них незаменимым источником энергии.

Вконтакте

Первооткрывателями АТФ стали учёные-биохимики гарвардской школы тропической медицины - Йеллапрагада Суббарао, Карл Ломан и Сайрус Фиске. Открытие произошло в 1929 году и стало главной вехой в биологии живых систем. Позднее, в 1941 году, немецким биохимиком Фрицем Липманом было установлено, что АТФ в клетках является основным переносчиком энергии.

Строение АТФ

Эта молекула имеет систематическое наименование, которое записывается так: 9-β-D-рибофуранозиладенин-5′-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат. Какие соединения входят в состав АТФ? Химически она представляет собой трифосфорный эфир аденозина - производного аденина и рибозы . Это вещество образуется путём соединения аденина, являющегося пуриновым азотистым основанием, с 1′-углеродом рибозы при помощи β-N-гликозидной связи. К 5′-углероду рибозы затем последовательно присоединяются α-, β- и γ-молекулы фосфорной кислоты.

Таким образом, молекула АТФ содержит такие соединения, как аденин, рибозу и три остатка фосфорной кислоты. АТФ - это особое соединение, содержащее связи, при которых высвобождается большое количество энергии. Такие связи и вещества называются макроэргическими. Во время гидролиза этих связей молекулы АТФ происходит выделение количества энергии от 40 до 60 кДж/моль, при этом данный процесс сопровождается отщеплением одного или двух остатков фосфорной кислоты.

Вот как записываются эти химические реакции :

  • 1). АТФ + вода→АДФ + фосфорная кислота + энергия;
  • 2). АДФ + вода→АМФ + фосфорная кислота + энергия.

Энергия, высвобожденная в ходе указанных реакций, используется в дальнейших биохимических процессах, требующих определённых энергозатрат.

Роль АТФ в живом организме. Её функции

Какую функцию выполняет АТФ? Прежде всего, энергетическую. Как уже было выше сказано, основной ролью аденозинтрифосфата является энергообеспечение биохимических процессов в живом организме. Такая роль обусловлена тем, что благодаря наличию двух высокоэнергетических связей, АТФ выступает источником энергии для многих физиологических и биохимических процессов, требующих больших энергозатрат. Такими процессами являются все реакции синтеза сложных веществ в организме. Это, прежде всего, активный перенос молекул через клеточные мембраны, включая участие в создании межмембранного электрического потенциала, и осуществление сокращения мышц.

Кроме указанной, перечислим ещё несколько, не менее важных, функций АТФ , таких, как:

Как образуется АТФ в организме?

Синтез аденозинтрифосфорной кислоты идёт постоянно , т. к. энергия организму для нормальной жизнедеятельности нужна всегда. В каждый конкретный момент содержится совсем немного этого вещества - примерно 250 граммов, которые являются «неприкосновенным запасом» на «чёрный день». Во время болезни идёт интенсивный синтез этой кислоты, потому что требуется много энергии для работы иммунной и выделительной систем, а также системы терморегуляции организма, что необходимо для эффективной борьбы с начавшимся недугом.

В каких клетках АТФ больше всего? Это клетки мышечной и нервной тканей, поскольку в них наиболее интенсивно идут процессы энергообмена. И это очевидно, ведь мышцы участвуют в движении, требующем сокращения мышечных волокон, а нейроны передают электрические импульсы, без которых невозможна работа всех систем организма. Поэтому так важно для клетки поддерживать неизменный и высокий уровень аденозинтрифосфата.

Каким же образом в организме могут образовываться молекулы аденозинтрифосфата? Они образуются путём так называемого фосфорилирования АДФ (аденозиндифосфата) . Эта химическая реакция выглядит следующим образом:

АДФ + фосфорная кислота + энергия→АТФ + вода.

Фосфорилирование же АДФ происходит при участии таких катализаторов, как ферменты и свет, и осуществляется одним из трёх способов:

Как окислительное, так и субстратное фосфорилирование использует энергию веществ, окисляющихся в процессе такого синтеза.

Вывод

Аденозинтрифосфорная кислота - это наиболее часто обновляемое вещество в организме. Сколько в среднем живёт молекула аденозинтрифосфата? В теле человека, например, продолжительность её жизни составляет менее одной минуты, поэтому одна молекула такого вещества рождается и распадается до 3000 раз за сутки. Поразительно, но в течение дня человеческий организм синтезирует около 40 кг этого вещества! Настолько велики потребности в этом «внутреннем энергетике» для нас!

Весь цикл синтеза и дальнейшего использования АТФ в качестве энергетического топлива для процессов обмена веществ в организме живого существа представляет собой саму суть энергетического обмена в этом организме. Таким образом, аденозинтрифосфат является своего рода «батарейкой», обеспечивающей нормальную жизнедеятельность всех клеток живого организма.

АТФ или по полной расшифровке аденозинтрифосфорная кислота, является "аккумулятором" энергии в клетках организма. Ни одна биохимическая реакция не проходит без участия АТФ. Молекулы АТФ находятся в ДНК и РНК.

Состав АТФ

Молекула АТФ имеет три составляющих: три остатка фосфорной кислоты, аденин и рибоза. То есть, АТФ имеет строение нуклеотида и относится к нуклеиновым кислотам. Рибоза-это углевод,а аденин-азотистое основание. Остатки кислоты объединены друг с другом неустойчивыми энергетическими связями. Энергия появляется при отщеплении молекул кислоты. Отделение происходит благодаря биокатализаторам. После отъединения, молекула АТФ уже превращается в АДФ (если отщепилась одна молекула) или в АМФ (если отщепились две молекулы кислоты). При отделении одной молекулы фосфорной кислоты выходит 40 кДж энергии.

Роль в организме

АТФ играет не только энергетическую роль в организме,но и ряд других:

  • является результатом синтезирования нуклеиновых кислот.
  • регулирование многие биохимических процессов.
  • сигнального вещества в других взаимодействиях клеток.

Синтез АТФ

Получение АТФ проходит в хлоропластах и митохондриях. Важнейший процесс в синтезировании молекул АТФ - это диссимиляции. Диссимиляция - это разрушение сложного до более простого.

Синтез АТФ проходит не в один этап, а в три этапа:

  1. Первый этап - подготовительный. Под действием ферментов в пищеварении происходит распад того, что мы поглотили. При этом жиры разлагаются до глицерина и жирных кислот, белки до аминокислот, а крахмал до глюкозы. То есть, всё подготавливается для дальнейшего использования. Выделяется тепловая энергия
  2. Второй этап - это гликолиз (безкислородный). Вновь происходит распад, но здесь распаду подвергается ещё и глюкоза. Так же участвуют ферменты. Но 40 % энергии остаются в АТФ, а остальное расходуется в тепло.
  3. Третий этап - гидролиз (кислородный). Он происходит уже в самих митохондриях. Здесь участие принимает и кислород, который мы вдыхаем, и ферменты. После полной диссимиляции выделяется энергия для образования АТФ.

В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ - одного из основных источников энергии.

АТФ - универсальный источник энергии

АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны. Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в аденозинтрифосфата.

Строение молекул вещества таково, что образующиеся связи между фосфатными группами несут огромное количество энергии. Поэтому такие связи также называются макроэргическими, или макроэнергетическими (макро=много, большое количество). Термин впервые ввел ученый Ф. Липман, и он же предложил использовать значок ̴ для их обозначения.

Очень важно для клетки поддерживать постоянный уровень содержания аденозинтрифосфата. Особенно это характерно для клеток мышечной ткани и нервных волокон, потому что они наиболее энергозависимы и для выполнения своих функций нуждаются в высоком содержании аденозинтрифосфата.

Строение молекулы АТФ

Аденозинтрифосфат состоит из трех элементов: рибозы, аденина и остатков

Рибоза - углевод, который относится к группе пентоз. Это значит, что в составе рибозы 5 атомов углерода, которые заключены в цикл. Рибоза соединяется с аденином β-N-гликозидной связь на 1-ом атоме углерода. Также к пентозе присоединяются остатки фосфорной кислоты на 5-ом атоме углерода.

Аденин - азотистое основание. В зависимости от того, какое азотистое основание присоединяется к рибозе, выделяют также ГТФ (гуанозинтрифосфат), ТТФ (тимидинтрифосфат), ЦТФ (цитидинтрифосфат) и УТФ (уридинтрифосфат). Все эти вещества схожи по строению с аденозинтрифосфатом и выполняют примерно такие же функции, однако они встречаются в клетке намного реже.

Остатки фосфорной кислоты . К рибозе может присоединиться максимально три остатка фосфорной кислоты. Если их два или только один, то соответственно вещество называется АДФ (дифосфат) или АМФ (монофосфат). Именно между фосфорными остатками заключены макроэнергетические связи, после разрыва которых высвобождается от 40 до 60 кДж энергии. Если разрываются две связи, выделяется 80, реже - 120 кДж энергии. При разрыве связи между рибозой и фосфорным остатком выделяется всего лишь 13,8 кДж, поэтому в молекуле трифосфата только две макроэргические связи (Р ̴ Р ̴ Р), а в молекуле АДФ - одна (Р ̴ Р).

Вот каковы особенности строения АТФ. По причине того, что между остатками фосфорной кислоты образуется макроэнергетическая связь, строение и функции АТФ связаны между собой.

Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата

Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах и транскрипции.

Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.

АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) - цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы - это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.

Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.

Как образуется АТФ в клетке

Функции и строение АТФ таковы, что молекулы вещества быстро используются и разрушаются. Поэтому синтез трифосфата - это важный процесс образования энергии в клетке.

Выделяют три наиболее важных способа синтеза аденозинтрифосфата:

1. Субстратное фосфорилирование.

2. Окислительное фосфорилирование.

3. Фотофосфорилирование.

Субстратное фосфорилирование основано на множественных реакциях, протекающих в цитоплазме клетки. Эти реакции получили название гликолиза - анаэробный этап В результате 1 цикла гликолиза из 1 молекулы глюкозы синтезируется две молекулы которые дальше используются для получения энергии, и также синтезируются два АТФ.

  • С 6 Н 12 О 6 + 2АДФ + 2Фн --> 2С 3 Н 4 O 3 + 2АТФ + 4Н.

Дыхание клетки

Окислительное фосфорилирование - это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.

Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.

Фотофосфорилирование

Процесс фотофосфорилирования - это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света. АТФ образуется во время световой стадии фотосинтеза - основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

В процессе фотосинтеза все по той же электронно-транспортной цепи проходят электроны, в результате чего формируется протонный градиент. Концентрация протонов на одной из сторон мембраны является источником синтеза АТФ. Сборка молекул осуществляется посредством фермента АТФ-синтазы.

В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.

В клетке около 1 млрд молекул АТФ.

Каждая молекула живет не больше 1 минуты.

Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.

В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.

Заключение

Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии. Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма. Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.

В основе всех живых процессов лежит атомно-молекулярное движение. Как дыхательный процесс, так и клеточное развитие, деление невозможны без энергии. Источником энергетического снабжения является АТФ, что это такое и как образуется рассмотрим далее.

Перед изучением понятия АТФ необходима его расшифровка. Данный термин означает нуклеозидтрифосфат, который существенно значим для энергетического и вещественного обмена в составе организма.

Это уникальный энергетический источник, лежащий в основе биохимических процессов. Данное соединение является основополагающим для ферментативного образования.

АТФ был открыт в Гарварде в 1929 году. Основоположниками стали ученые Гарвардской медицинской школы. В их число вошли Карл Ломан, Сайрус Фиске и Йеллапрагада Суббарао. Они выявили соединение, которое по строению напоминало адениловый нуклеотид рибонуклеиновых кислот.

Отличительной особенностью соединения было содержание трех остатков фосфорной кислоты вместо одного. В 1941 году ученый Фриц Липман доказал, что АТФ имеет энергетический потенциал в пределах клетки. Впоследствии был обнаружен ключевой фермент, который получил название АТФ-синтаза. Его задача – образование в митохондриях кислотных молекул.

АТФ – это энергетический аккумулятор в клеточной биологии, является обязательным для успешного осуществления биохимических реакций.

Биология аденозинтрифосфорной кислоты предполагает ее образование в результате энергетического обмена. Процесс состоит из создания 2 молекул на второй стадии. Остальные 36 молекул появляются на третьем этапе.

Скопление энергии в структуре кислоты происходит в связующей части между остатками фосфора. В случае отсоединения 1 фосфорного остатка происходит энергетическое выделение 40 кДж.

В результате кислота превращается в аденозиндифосфат (АДФ). Последующее фосфатное отсоединение способствует появлению аденозинмонофосфата (АМФ).

Следует отметить, цикл растений предусматривает повторное использование АМФ и АДФ, в результате которого происходит восстановление этих соединений до состояния кислоты. Это обеспечивается процессом .

Строение

Раскрытие сущности соединения возможно после изучения того, какие соединения входят в состав молекулы АТФ.

Какие соединения входят в состав кислоты:

  • 3 остатка фосфорной кислоты. Кислотные остатки объединяются друг с другом посредством энергетических связей неустойчивого характера. Встречается также под названием ортофосфорной кислоты;
  • аденин: Является азотистым основанием;
  • рибоза: Представляет собой пентозный углевод.

Вхождение в состав АТФ данных элементов присваивает ей нуклеотидное строение. Это позволяет относить молекулу к категории нуклеиновых кислот.

Важно! В результате отщепления кислотных молекул происходит высвобождение энергии. Молекула АТФ содержит 40 кДж энергии.

Образование

Формирование молекулы происходит в митохондриях и хлоропластах. Основополагающий момент в молекулярном синтезе кислоты – диссимиляционный процесс. Диссимиляция – процесс перехода сложного соединения до относительно простого за счет разрушения.

В рамках синтеза кислоты принято выделять несколько стадий:

  1. Подготовительная. Основа расщепления – пищеварительный процесс, обеспечивается за счет ферментативного действия. Распаду подвергается пища, попавшая в организм. Происходит жировое разложение до жирных кислот и глицерина. Белки распадаются до аминокислот, крахмал – до образования глюкозы. Этап сопровождается выделением энергии теплового характера.
  2. Бескислородная, или гликолиз. В основе лежит процесс распада. Происходит глюкозное расщепление с участием ферментов, при этом 60% выделяемой энергии превращается в тепло, остальная часть остается в составе молекулы.
  3. Кислородная, или гидролиз; Осуществляется внутри митохондрий. Происходит с помощью кислорода и ферментов. Участвует выдыхаемый организмом кислород. Завершается полной . Подразумевает энергетическое выделение для формирования молекулы.

Существуют следующие пути молекулярного образования:

  1. Фосфорилирование субстратного характера. Основано на энергии веществ в результате окисления. Превалирующая часть молекулы формируется в митохондриях на мембранах. Осуществляется без участия ферментов мембраны. Совершается в цитоплазматической части посредством гликолиза. Допускается вариант образования за счет транспортировки фосфатной группы с иных макроэргических соединений.
  2. Фосфорилирование окислительного характера. Происходит за счет окислительной реакции.
  3. Фотофосфорилирование у растений в ходе фотосинтеза.

Значение

Основополагающее значение молекулы для организма раскрывается через то, какую функцию выполняет АТФ.

Функционал АТФ включает следующие категории:

  1. Энергетическую. Обеспечивает организм энергией, является энергетической основой физиологических биохимических процессов и реакций. Происходит за счет 2 высокоэнергетических связей. Подразумевает мышечное сокращение, формирование трансмембранного потенциала, обеспечение молекулярного переноса сквозь мембраны.
  2. Основу синтеза. Считается исходным соединением для последующего образования нуклеиновых кислот.
  3. Регулятивную. Лежит в основе регуляции большинства процессов биохимического характера. Обеспечивается за счет принадлежности к аллостерическому эффектору ферментативного ряда. Воздействует на активность регуляторных центров путем их усиления или подавления.
  4. Посредническую. Считается вторичным звеном в передаче гормонального сигнала в клетку. Является предшественником образования циклического АДФ.
  5. Медиаторную. Является сигнальным веществом в синапсах и иных взаимодействиях клеточного характера. Обеспечивается пуринергическая сигнальная передача.

Среди вышеперечисленных моментов главенствующее место отводится энергетической функции АТФ.

Важно понимать , независимо от того, какую функцию выполняет АТФ, ее значение универсально.

Полезное видео

Подведем итоги

В основе физиологических и биохимических процессов лежит существование молекулы АТФ. Основная задача соединений – энергетическое обеспечение. Без соединения невозможна жизнедеятельность как растений, так и животных.

Вконтакте

Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом .

Процессы синтеза специфических собственных веществ из более простых называется анаболизмом , или ассимиляцией , или пластическим обменом . В результате анаболизма образуются ферменты, вещества, из которых построены клеточные структуры, и т.п. Этот процесс, как правило, сопровождается большим потреблением энергии .

Эта энергия получается организмом в других реакциях, в которых более сложные вещества расщепляются до простых. Эти процессы называются катаболизмом , или диссимиляцией , или энергетическим обменом . Продуктами катаболизма у аэробных организмов являются СО 2 , Н 2 О, АТФ и

восстановленные переносчики водорода (НАД∙Н и НАДФ∙Н), которые принимают атомы водорода, отщепляемые от органических веществ в процессах окисления. Некоторые низкомолекулярные вещества, которые образуются в ходе катаболизма, в дальнейшем могут служить предшественниками необходимых клетке веществ (пересечение катаболизма и анаболизма).

Катаболизм и анаболизм тесно связаны: анаболизм использует энергию и восстановители, образующиеся в реакциях катаболизма, а катаболизм осуществляется под действием ферментов, образующихся в результате реакций анаболизма.

Как правило, катаболизм сопровождается окислением используемых веществ, а анаболизм - восстановлением.

пластический обмен (анаболизм) энергетический обмен (катаболизм)
синтез и накопление (ассимиляция) сложных веществ распад сложных веществ на простые (диссимиляция)
идет с затратой энергии (расходуется АТФ) выделяется энергия (синтезируется АТФ)
может быть источником органических веществ для энергетического обмена является источником энергии для пластического обмена

биосинтез белков, жиров, углеводов;

фотосинтез (синтез углеродов растениями и синезелеными водорослями);

хемосинтез

анаэробное дыхание (= гликолиз = брожение);

аэробное дыхание (окислительное фосфорилирование)

Реакции анаболизма у разных организмов могут иметь некоторые отличия (см. тему "Способы получения энергии живыми организмами").

АТФ - аденозинтрифосфат

В процессе катаболизма выделяется энергия в виде тепла и в виде АТФ.

АТФ - единый и универсальный источник энергообеспечения клетки.

АТФ нестабильна.

АТФ является "энергетической валютой", которую можно потратить на синтезы сложных веществ в реакциях анаболизма.

Гидролиз (распад) АТФ:

АТФ + $Н_{2}О$ = АДФ + $Н_{3}РО_{4}$ + 40 кДж/моль

Энергетический обмен

Живые организмы получают энергию в результате окисления органических соединений.

Окисление - процесс отдачи электронов.

Расход полученной энергии:

50% энергии выделяется в виде тепла в окружающую среду;

50% энергии идет на пластический обмен (синтез веществ).

В клетках растений :

крахмал → глюкоза → АТФ

В клетках животных :

гликоген → глюкоза → АТФ

Подготовительный этап

Ферментативное расщепление сложных органических веществ до простых в пищеварительной системе:

    белковые молекулы - до аминокислот

    липиды - до глицерина и жирных кислот

    углеводы - до глюкозы

Распад (гидролиз) высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом.

Вся высвобождающаяся при этом энергия рассеивается в виде тепла.

Простые вещества всасываются ворсинками тонкого кишечника:

    аминокислоты и глюкоза - в кровь;

    жирные кислоты и глицерин - в лимфу;

и переносятся к клеткам тканей организма.

Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению (гликолизу).

На подготовительном этапе может происходить гидролиз запасные вещества клеток: гликогена - у животных (и грибов) и крахмала - у растений. Гликоген и крахмал являются полисахаридами и распадаются на мономеры - молекулы глюкозы.

распад гликогена

Гликоген печени используется не столько для собственных нужд печени, сколько для поддержания постоянной концентрации глюкозы в крови, и, следовательно, обеспечивает поступление глюкозы в другие ткани.

Рис. Функции гликогена в печени и мышцах

Гликоген, запасенный в мышцах, не может распадаться до глюкозы из-за отсутствия фермент. Функция мышечного гликогена заключается в освобождении глюкозо-6-фосфата, потребляемого в самой мышце для окисления и использования энергии.

Распад гликогена до глюкозы или глюкозо-6-фосфата не требует энергии.

Гликолиз (анаэробный этап)

Гликолиз - расщепление глюкозы с помощью ферментов.

Идет в цитоплазме, без кислорода.

Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД+ (никотинамидадениндинуклеотид).

Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:

$С_{6}Н_{12}О_{6}$ + 2АДФ + 2$Н_{3}РО_{4}$ + 2$НАД^{+}$ → 2$С_{3}Н_{4}О_{3}$ + 2АТФ + 2$Н_{2}О$ + 2($НАДН+Н^{+}$).

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке:

если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

$С_{3}Н_{4}О_{3}$ → $СО_{2}$ + $СН_{3}СОН$,

$СН_{3}СОН$ + $НАДН+Н^{+}$ → $С_{2}Н_{5}ОН$ + $НАД^{+}$ .

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

$С_{3}Н_{4}О_{3}$ + $НАДН+Н^{+}$ → $С_{3}Н_{6}О_{3}$ + $НАД^{+}$.

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80кДж запасается в связях 2 молекул АТФ.

дыхание, или Окислительное фосфорилирование (аэробный этап)

Окислительное фосфорилирование - процесс синтеза АТФ с участием кислорода.

Идет на мембранах крист митохондрий в присутствии кислорода.

Пировиноградная кислота, образовавшаяся при бескислородном расщеплении глюкозы, окисляется до конечных продуктов СО2 и Н2О. Этот многоступенчатый ферментативный процесс называется циклом Кребса, или циклом трикарбоновых кислот.

В результате клеточного дыхания при распаде двух молекул пировиноградной кислоты синтезируются 36 молекул АТФ:

2$С_{3}Н_{4}О_{3}$ + 32$О_{2}$ + 36АДФ + 36$Н_{3}РО_{4}$ → 6$СО_{2}$ + 58$Н_{2}О$ + 36АТФ.

Кроме того, нужно помнить, что две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы.

Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

$С_{6}Н_{12}О_{6}$ + 6$О_{2}$ + 38АДФ → 6$СО_{2}$ + 6$Н_{2}О$ + 38АТФ + Qт,

где Qт - тепловая энергия.

Таким образом при окислительном фосфорилировании образуется в 18 раз больше энергии (36 АТФ), чем при гликолизе (2 АТФ).